Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 7 of 7
  • Detection of azo dyes using carbon dots from olive mill wastes
    Publication . Sousa, Diogo A.; Berberan-Santos, Mario; Prata, José Virgílio
    Azo dyes are widely spread in our day life, being heavily used in cosmetics, healthcare products, textile industries, and as artificial food colorants. This intense industrial activity, which inherently includes their own production, inexorably leads to uncontrolled release of dyes into the environment. As emerging pollutants, their detection, particularly in water systems, is a priority. Herein, a fluorescence-based method was employed for the sensitive and selective detection of anionic and neutral azo dyes. Carbon dots (CDs) synthesized from wet pomace (WP), an abundant semi-solid waste of olive mills, were used as probes. An outstanding capability for detection of azo dyes methyl orange (MO) and methyl red (MR) in aqueous solutions was disclosed, which reached a limit of detection (LOD) of 151 ppb for MO. The selectivity of WP-CDs for the anionic azo dye (MO) was established through competitive experiments with other dyes, either anionic (indigo carmine) or cationic (fuchsin, methylene blue, and rhodamine 6G); perchlorate salts of transition metal cations (Cu(II), Co(II), Fe(II), Fe(III), Hg(II), and Pb(II)); and sodium salts of common anions (NO3-, CO32-, Cl-, and SO42-). Evidence has been collected that supports static quenching as the main transduction event underlying the observed quenching of the probe's fluorescence, combined with a dynamic resonance energy transfer (RET) mechanism at high MO concentrations.
  • Carbon dots from coffee grounds by a one-pot microwave-assisted method
    Publication . Moraes, Bianca; Costa, Alexandra I.; Barata, Patrícia; Prata, José V.
    Carbon-based nanomaterials, particularly carbon dots (C-dots) have attracted the researchers interest due their excellent luminescence, photostability and biocompatibility, encouraging their use in several areas such as biomedicine, (bio)sensors, photocatalysis and optoelectronics. C-dots could be prepared by a variety of methods (top-down and bottom-up approaches), using a great diversity of carbon sources. Bottom-up processes based on the use of waste materials for producing C-dots are particularly attractive since an effective reduction of environmental impacts of those wastes may be foreseen, while high-valued nanomaterials can be simultaneously obtained. Coffee is one of the most consumed brews all over the world, generating large amounts of coffee waste, a source of a serious environmental problem due to the high content of organic matter such as caffeine, phenols, tannins, and sugars. Herein, we explore the valorization of coffee grounds generated from automatic and vending machines for production of C-dots through a one-pot monomode microwave-assisted method. Structural and photophysical characterization of the as-synthesized nanomaterials have been carried out, and their potential applications as sensing materials for pollutants and explosives (e.g. nitroanilines and nitroaromatics) were evaluated by fluorescence and absorption techniques.
  • Finding value in wastewaters from the cork industry: carbon dots synthesis and fluorescence for hemeprotein detection
    Publication . Alexandre, Marta R.; Costa, Alexandra I.; Berberan-Santos, Mario; Prata, José V.
    Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry—an abundant and a_ordable, but environmentally-problematic industrial e_uent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV–Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-o_ of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that na oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the di_erences between the two types of nanomaterials highlighted.
  • Carbon dots synthesis from coffee grounds, and sensing of nitroanilines
    Publication . Moraes, Bianca; Costa, Alexandra I.; Barata, Patrícia; Prata, José V.
    Fluorescent carbon dots (C-dots) were directly synthesized by a sustainable and eco friendly one-pot microwave-assisted hydrothermal carbonization method from coffee grounds waste. The coffee grounds obtained from automatic coffee machines, after being heated at 190 °C for 1–4 h in the presence of nitrogen additives, furnished the desired carbon nanomaterials. Struc tural and photophysical properties of the as-synthesized nanomaterials were evaluated by FTIR, 1H NMR, UV-Vis, and fluorescence spectroscopies. The ability of the C-dots to behave as probes for isomeric nitroanilines (ortho-, meta- and para-nitroaniline) was explored through fluorimetric titra tion experiments. High sensitivities and selectivities were obtained for the detection of nitroanilines in aqueous media.
  • How an environmental issue could turn into useful high-valued products: the olive mill wastewater case
    Publication . Sousa, D. A.; Costa, Alexandra; Alexandre, M. R.; Prata, José Virgílio
    Carbon-based nanomaterials have been directly synthesized fromolivemillwastewaters (OMWWs) for the first time, using expedite and simple environmental-friendly procedures. The OMWWs collected from a mill operating by a two-phase centrifugation system, after being heated (150–300 °C) solely or in the presence of additives for 2–12 h, furnished nanostructuredmaterials in high yields. Under an optimised set of reaction conditions here described, the resultant as-synthetized aqueous dispersions of carbon nanoparticles exhibit outstanding fluorescence emission properties, which encompass an astonishing quantum yield (ΦF N 0.4). The as-prepared carbon nanomaterials show excitation-dependent emissions covering the whole visible spectrum, with a predominant high glow in the blue-green region, and a remarkable photostability. The relevant features attained by the nanomaterials here reported, allied to their easy synthesis and carbon source affordability, render them with unique capabilities to be used in several current and emerging technological applications, namely in bioimaging and nanomedicine, sensorial analysis, (photo)catalysis and optoelectronics. The as-synthesized nanoparticles show a remarkable high sensitivity and selectivity towards haemoglobin.
  • Carbon dots from coffee grounds: synthesis, characterization, and detection of noxious nitroanilines
    Publication . Costa, Alexandra I.; Barata, Patrícia; Moraes, Bianca; Prata, José V.
    Coffee ground (CG) waste is generated in huge amounts all over the world, constituting a serious environmental issue owing to its low biodegradability. Therefore, processes that simultaneously aim for its valorization while reducing its environmental impact are in great demand. In the current approach, blue luminescent carbon dots (C-dots) were produced in good chemical yields from CGs following hydrothermal carbonization methods under an extended set of reaction parameters. The remarkable fluorescent properties of the synthesized C-dots (quantum yields up to 0.18) allied to their excellent water dispersibility and photostability prompted their use for the first time as sensing elements for detection of noxious nitroanilines (NAs) in aqueous media. Very high levels of NA detection were achieved (e.g., limit of detection of 68 ppb for p-nitroaniline), being the regioisomeric selectivity attributed to its higher hyperpolarizability and dipole moment. Through ground-state and time-resolved fluorescence assays, a static fluorescence quenching mechanism was established. H-1 NMR titration data also strongly suggested the formation of ground-state complexes between C-dots and NAs.
  • Luminescent carbon dots from wet olive pomace: structural insights, photophysical properties and cytotoxicity
    Publication . Sousa, Diogo A.; Ferreira, L.F. Vieira; Fedorov, Alexander A.; Rego, Ana; Ferraria, Ana Maria; Cruz, Adriana; Berberan-Santos, Mario; Prata, José V.
    Carbon nanomaterials endowed with significant luminescence have been synthesized for the first time from an abundant, highly localized waste, the wet pomace (WP), a semi-solid by-product of industrial olive oil production. Synthetic efforts were undertaken to outshine the photoluminescence (PL) of carbon nanoparticles through a systematic search of the best reaction conditions to convert the waste biomass, mainly consisting in holocellulose, lignin and proteins, into carbon dots (CDs) by hydrothermal carbonization processes. Blue-emitting CDs with high fluorescence quantum yields were obtained. Using a comprehensive set of spectroscopic tools (FTIR, Raman, XPS, and 1H/13C NMR) in combination with steady-state and time-resolved fluorescence spectroscopy, a rational depiction of WP-CDs structures and their PL properties was reached. WP-CDs show the up-conversion of PL capabilities and negligible cytotoxicity against two mammalian cell lines (L929 and HeLa). Both properties are excellent indicators for their prospective application in biological imaging, biosensing, and dynamic therapies driven by light.