Percorrer por data de Publicação, começado por "2026-03-01"
A mostrar 1 - 1 de 1
Resultados por página
Opções de ordenação
- Fourier-enhanced sequence-to-sequence latent graph neural networks for multi-node spatiotemporal forecasting in a hydroelectric reservoirPublication . Seman, Laio Oriel; Stefenon, Stefano Frizzo; Yow, Kin-Choong; Coelho, Leandro dos Santos; Mariani, Viviana CoccoThis paper presents a Fourier-enhanced dynamic sequence-to-sequence latent graph neural network (Seq2SeqLatentGNN), a deep learning architecture for multi-node spatiotemporal forecasting in hydroelectric reservoir systems. The model integrates three key components: (i) a custom Fourier layer that analyzes global temporal patterns through frequency-domain transformations, (ii) a latent correlation graph convolutional network that infers relational structures between monitoring stations without requiring predefined adjacency matrices, and (iii) an attention-based sequence-to-sequence model that processes temporal dependencies while enabling multi-step forecasting. The architecture simultaneously learns graph structure and forecasting tasks, adapting to changing spatial relationships between reservoir nodes. The proposed architecture was evaluated using a comprehensive dataset derived from 19 interconnected hydroelectric reservoirs located in southern Brazil. The dataset encompasses multiple years of high-resolution (hourly) measurements, including reservoir water levels, inflow and outflow rates, precipitation records, and energy production metrics. Experimental results demonstrate that Seq2SeqLatentGNN achieves superior performance compared to conventional statistical models and contemporary machine learning methods, as measured by standard error metrics. Analysis of the learned latent correlations reveals meaningful spatial dependencies that align with hydrological principles. The model exhibits consistent performance across varying temporal patterns, adapts to regime transitions, and captures both periodic and nonstationary dynamics. The proposed architecture contributes to spatiotemporal forecasting by combining spectral processing, dynamic graph learning, and sequence modeling in a unified framework applicable to systems with evolving connectivity patterns.
