Browsing by Issue Date, starting with "2024-07-15"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A new finite element formulation for the dynamic analysis of beams under moving loadsPublication . Freixial Argente Dos Santos, Hugo AlexandreEarly studies highlighted the fact that moving loads on beams may induce significantly higher dynamic deflections and stresses than those observed in the quasi-static case. Since then, the dynamics of beams under moving loads has been an active research area, in particular for the past decades, with the rapidly increasing computer power allowing the development of highly robust and sophisticated computational and numerical methods in applied mechanics and engineering. This work introduces a novel finite element formulation for the dynamic analysis of Euler-Bernoulli beams subjected to moving loads. The formulation is consistent with a complementary form of the well known Hamilton’s variational principle, and will be used to address some numerical tests in both modal and time domains. The effectiveness and accuracy of the formulation will be assessed and discussed by comparison between the obtained results and those rendered by the standard displacement-based finite element formulation. As it will be demonstrated, the proposed formulation not only renders continuous bending-moment and shear-force distributions, a desired feature in the structural design field, but also has a superior accuracy than that provided by the displacement formulation that uses the same number of nodal degrees-of-freedom.
- Microstructure and corrosion behavior of A390-10 wt% SiC composite-AA2024-T6 aluminum alloy dissimilar joint: Effect of post-weld heat treatmentPublication . Aval, Hamed Jamshidi; Galvão, IvanThe weldability of aluminum matrix composites to other materials, such as aluminum alloys, is an essential point in expanding the use of these materials. This study investigated the effect of rotational speed and post-weld heat treatment on the microstructure, mechanical properties, and corrosion behavior of A390-10 wt% SiC composite/ AA2024-T6 aluminum alloy dissimilar joint. Friction stir welding is performed using a square frustum pyramid pin tool with a rotational speed of 400–1200 rpm and a traverse speed of 40 mm/min. Results found that a surface groove formed on the weld crown at a rotational speed lower than 800 rpm due to insufficient material flow. Also, the tunnel defect formed on the advancing side at a rotational speed higher than 1000 rpm due to the turbulent flow of material. By increasing rotational speed from 800 to 1200 rpm, the average grain size of the advancing and retreating sides increased by 41.1 and 46.3 %, respectively. Compared to AA2024-T6 and A390-10 wt% SiC composite base metals, the average hardness of the stir zone of the joint fabricated by the rotational speed of 800 rpm increased by 8.4 and 38.2 %, respectively. By increasing the rotation speed from 800 to 1000 rpm, the yield strength and ultimate tensile strength decreased by 6.8 and 6.5 %, respectively. By decreasing rotational speed from 1000 to 800 rpm, the elongation and corrosion resistance decreased by 5.4 % and 34.7 %, respectively. After post-weld heat treatment, the hardness, yield strength, ultimate tensile strength, and corrosion resistance increase 15.9, 12.7, 7.8, and 28.9 %, respectively.