Browsing by Issue Date, starting with "2022-12-30"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fascinating museological audiences, or the cinematic appealPublication . Chinita, FátimaThis review of Elisa Mandelli’s book The Museum as a Cinematic Space: The Display of Moving Images in Exhibitions (2019) explains how, according to the author, several viewing dispositifs, understood as a rather flexible assemblage of elements, are increasingly being used in museums to combine education with entertainment. Thus, museums are becoming “cinematic spaces” with an ideological perspective. Mandelli’s approach to the projection technologies of moving images in museological venues is not only chronological but also phenomenological. A three-way interest is recognizable in the alignment of chapters, encompassing the educational value of the dispositifs, their artistic nature, and the experiential factor. As the book provides an interesting overview of two fields that usually are not taken together and contains an assortment of case studies described in detail, it should make a good addition to the fields of Museum and Film Studies.
- Fractal analysis and ferroelectric properties of Nd(Zn-1/Ti-2(1)/(2))O-3(NZT)Publication . Khamoushi, Kouros; Serpa, CristinaThe challenges in productivity of satellite mobile devices are growing rapidly to overcome the question of miniaturization. The intention is to supply the electrical and microwave properties of materials by discovering their outstanding electronic properties. Neodymium Zinc Titanate (NZT) can be a promising ferroelectric material due to its stable dielectric and microwave properties. The grain size and shape of NZT have a strong influence on overall material performances. Therefore, shape, reconstruction and property of the coming compound take an important part and can be predicted before being utilized in the devices. The significant of this research is to define ferroelectric properties of NZT and to characterize it by using Fractal Nature Analysis (FNA). FNA is a powerful mathematical technique that could be applied to improve the grain shape and interface reconstruction. The fractal structure is identified by its self-similarity. The self-similarity of an object means a repetition of shapes in smaller scales. A measure of this structure is computed using the Hausdorff dimension. It is for the first time in this investigation the Fractal analysis method is applied for the microwave materials microstructure reconstruction which makes this research an innovative work and will open the door for Curie-Weiss law fractal correction. In connection to our previous research for dielectric properties fractalization, we had some characterization and reconstruction data which include the Hausdorff dimension (HD).