Browsing by Issue Date, starting with "2018-08-10"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Electrochemical performance of MnOx·center dot nH(2)O@Ni composite foam electrodes for energy storage in KOH mediaPublication . Siwek, Katarzyna; Eugénio, S.; Moura E Silva, Teresa; MONTEMOR, FATIMANanostructured porous MnO2, especially its hydrated amorphous and low crystalline form (MnO2·nH2O), has been one of the most promising material considered for charge storage applications, due to electrochemical similarities with RuO2 and its relative low cost. However, the intrinsic poor conductivity of MnO2 combined with the presence of structural water, which provides high ionic but low electronic conductivity, is a great hindrance for wider application. An effective approach to overcome this drawback involves the deposition of thin MnO2 layers on porous, high surface area metallic scaffolds. The present work addresses this route and provides novel insights thanks to the combination of MnOx·nH2O with custom-made Ni foams, fabricated via one-step electrodeposition using the dynamic hydrogen bubble template (DHBT). The porous Ni foams provide a scaffold with a 3D architecture with optimized pore size and surface. The composite electrode was fabricated by anodic deposition of MnOx·nH2O on the 3D Ni foams. The electrochemical behaviour was tested in 1 M KOH, since there are very few studies addressing the electrochemical behaviour of MnOx·nH2O in alkaline media for electrochemical supercapacitors applications. In addition, thermal treatment (150–250 °C) was performed to evaluate the effect of hydration on the material properties. The results revealed that the as-obtained composites are highly stable, displaying much higher specific capacitances with 73–90% (depending on the mass load) capacitance retention compared to their de-hydrated counterparts. The charge-discharge processes were found to be highly reversible throughout 5000 cycles, maintaining almost 100% columbic efficiency. In conclusion, the MnOx·nH2O@Ni composite electrodes showed a very stable pseudocapacitive behaviour and exceptional cycling performance in 1 M KOH, being therefore a promising alternative charge storage electrode for electrochemical supercapacitors.
- Capacitance response in an aqueous electrolyte of Nb2O5 nanochannel layers anodically grown in pure molten o-H3PO4Publication . Upadhyay, Kush; Cha, Gihoon; Hildebrand, Helga; Schmuki, Patrik; Moura E Silva, Teresa; MONTEMOR, FATIMA; Altomare, MarcoVertically aligned Nb2O5 nanochannel layers are grown on Nb metal substrates by self-organizing electrochemical anodization in a pure molten o-H3PO4 electrolyte. The capacitive behavior of these structures when used as negative electrodes is investigated in aqueous 1 M Na2SO4 electrolyte, in a potential range from −0.2 to −1.25 V vs. SCE. Surface chemistry, morphology and crystallographic features of the Nb2O5 nanochannel electrodes are tailored by adjusting the synthesis parameters, namely anodization time and crystallization temperature, which have a significant effect on the electrode performance. 8 μm thick Nb2O5 nanochannel layers that are converted into orthorhombic phase by crystallization at 450 °C, display a maximized areal capacitance of ∼100 mF cm-2 at a current density of 1 mA cm−2. These electrodes retain 63% of the initial capacitance at 10 mA cm−2 and 81% after 1500 charge-discharge cycles at a current density of 1.3 mA cm−2. Kinetic analysis of the electrochemical results reveals the occurrence of pseudocapacitive and diffusion-controlled processes. Electrochemical impedance spectroscopy evidences for these structures a low resistance across the electrode and at the electrode/substrate interface. These results are associated with the nanochannel morphology (high active area) of the Nb2O5 layers, and are ascribed to their crystalline nature, which provides an “oriented porosity” for ion diffusion and directional pathways for charge transport and collection.