Browsing by Author "Santos, Telmo G."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparison of deposited surface area of airbone ultrafine particles generated from two welding processesPublication . Gomes, João; Albuquerque, Paula Cristina; Miranda, Rosa M.; Santos, Telmo G.; Vieira, Maria Teresa FreireThis article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
- Comparison of deposited surface area of airborne ultrafine particles generated from two welding processesPublication . Gomes, J. F.; Albuquerque, Paula Cristina; Miranda, Rosa M.; Santos, Telmo G.; Vieira, M. T.This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
- In situ ultrasonic testing for wire arc additive manufacturing applicationsPublication . Lopez, Ana Beatriz; Sousa, José Pedro; Pragana, J.P.M; Bragança, Ivo; Santos, Telmo G.; Silva, C.M.A.In this paper, we present a non-destructive testing (NDT) technique based on in situ detection of defects up to 100 °C by ultrasonic testing (UT) during construction of parts by a metal additive manufacturing technology known as wire arc additive manufacturing (WAAM). The proposed technique makes use of interlayer application of commercial solder flux to serve as coupling medium for in situ inspection using a special-purpose UT probe. The experimental work was carried out in deposited ER5356 aluminum straight walls following a threefold structure. First, characterization tests with geometrically similar walls with and without interlayer application of solder flux highlight its neutrality, with no effect on the chemical, metallurgical and mechanical properties of the walls. Secondly, UT tests on walls at temperatures ranging from room temperature to 100 °C demonstrate the satisfactory performance of the solder flux as a coupling medium, with little to no soundwave amplitude losses or noise. Finally, acoustic attenuation, impedance and transmission estimations highlight the effectiveness of the proposed technique, establishing a basis for the future development of automated NDT systems for in situ UT of additive manufacturing processes.
- Influence of processing parameters on the density of 316L stainless steel parts manufactured through laser powder bed fusionPublication . Pragana, J. P. M.; Pombinha, Pedro; Valdemar, R. Duarte; Rodrigues, Tiago A.; Oliveira, João P.; Bragança, Ivo; Santos, Telmo G.; Miranda, Rosa M.; Coutinho, Luísa; Silva, C.M.A.Additive manufacturing technologies are becoming more popular, as they allow the fabrication of specific parts with complex geometries not achievable by conventional manufacturing. In metal additive manufacturing, one of the most widely used technologies is laser powder bed fusion. This work focuses on the influence of different processing parameters on the density of AISI 316L stainless parts obtained through this technology. The article presents a review of published works on the deposition of AISI 316L stainless steel using laser powder bed fusion to define an optimal range of parameters to produce parts with densities above 99%, complemented by density measurements for new sets of laser powder bed fusion processing parameters within the defined optimal range. The investigation provides a further insight on the effect of operating parameters such as vector size and gas atmosphere (Nitrogen and Argon) on the part density. The density measurements were performed using two techniques: micrograph analysis and Archimedes method. Results reveal that an increase in vector size has a negative influence on part density. With the Archimedes method, a maximum relative density of 99.87% was achieved using Nitrogen atmosphere, showing that it is possible to produce near fully dense parts by laser powder bed fusion without post-processing by laser re-melting.