Percorrer por autor "Nesterova, Oksana V."
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Heterometallic CuCd and Cu2Zn complexes with o-vanillin and its Schiff-base derivative: slow magnetic relaxation and catalytic activity associated with Cu(II) centresPublication . Vassilyeva, Olga Yu; Nesterova, Oksana V.; Bienko, Alina; Komarnicka, Urszula K.; Buvaylo, Elena A.; Vasylieva, Svitlana M.; Skelton, Brian W.; Nesterov, Dmytro S.Abstract In this work, two novel heterometallic mixed-ligand mixed-anion complexes [CuIICdIIClL(o-Van) (OAc)]·3H2O (1) and [CuII2ZnIICl2L2(o-Van)(OAc)] (2) were prepared by reacting fine copper powder and Cd(II) or Zn(II) acetate with an ethanol solution of the Schiff-base ligand HL formed in situ in the condensation reaction of 2-hydroxy-3-methoxy-benzaldehyde (o-VanH) and CH3NH2·HCl. The compounds were thoroughly characterized by elemental analysis, FT-IR, UV/Vis and EPR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction, revealing the neutral molecular nature of both the compounds. Catalytic properties of 1 and 2 were studied in the oxidation of hydrocarbons with H2O2 under mild conditions, showing the maximum reaction rate of 4 × 10−5 M s−1 and TOF up to 640 h−1. Both compounds undergo complex transformations in solution as evidenced by kinetic analysis and time-dependent UV/Vis spectroscopy, indicating that the reduced Cu(I) form of 1 is unexpectedly unfavorable. Complex 1 demonstrates slow magnetic relaxation dominated by the direct relaxation process between T = 1.8 and 7 K under an external DC field of 0.2 and 0.4 T, a very rarely observable effect in the coordination compounds of Cu(II). Complex 2 possesses weak ferromagnetism (J = 4.50 cm−1, zJ’ = −0.201 cm−1 for H = −JS1S2 formalism) occurring through the Cu–O–Cu pathways. Theoretical CASSCF, DFT and TDDFT calculations were applied to investigate the electronic structures of 1 and 2 and rationalize their behavior in solution.
- Phenoxazinone synthase-like catalytic activity of bi- and trinuclear copper(II) complexes with 2- benzylethanolamine: experimental and theoretical investigationsPublication . Nesterova, Oksana V.; Bondarenko, Olena E.; Pombeiro, Armando; Nesterov, Dmytro S.Abstract The self-assembly reaction of 2-benzylaminoethanol (Hbae) with CuCl2 or Cu(NO3)2 leads to the formation of binuclear [Cu2(bae)2(Cl)2] (1) and [Cu2(Hbae)2(bae)2](NO3)2 (2) complexes, while the trinuclear [Cu3(Hbae)2(bae)2(dmba)2](NO3)2 (3) compound was obtained using the auxiliar bulky substituted 2,2-dimethylbutyric acid (Hdmba). Crystallographic studies reveal the molecular structures of 1 and 2 based on the similar {Cu2(μ-O)2} core, while the structure of 3 features the {Cu3(μ-O)2} core with consecutive arranement of the metal centres, supported by the additional carboxylate bridges. The strong intermolecular hydrogen bonds join the molecular structures into 1D (for 1 and 3) or 2D (for 2) architectures. All three compounds act as catalysts for the aerobic oxidation of 2-aminophenol to the phenoxazinone chromophore (phenoxazinone synthase-like activity) with the maximum reaction rates up to 2.3×10-8 M s-1. The substrate scope involves methyl-, nitro- and chloro-substituted 2-aminophenols, disclosing the negligible activity of nitro-derivatives, while the 6-amino-m-cresol substrate shows the highest activity with the initial reaction rate of 5.8×10-8 M s-1. The mechanism of the rate-limiting reaction step (copper-catalysed formation of 2-aminophenoxyl radicals) was investigated at the DFT level. The combined DFT and CASSCF studies of the copper superoxo CuII-OO⋅ radical species as possible unconventional reaction intermediates resulted in a rational mechanism of H-atom abstraction, where the activation energies follow the experimental reactivity of substituted 2-aminophenols. The TDDFT and STEOM-DLPNO-CCSD theoretical calculations of the absorption spectra of substrates, phenoxazinone chromophores and putative polynuclear species containing 2-aminophenoxo ligand are reported.
