Browsing by Author "Monteiro, R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Catalytic behavior of alkali-treated Pt/HMOR n-hexane hydroisomerizationPublication . Monteiro, R.; Ania, Conchi O.; Rocha, J.; Carvalho, A. P.; Martins, Ângela Maria PereiraBifunctional Pt-HMOR catalysts were prepared by incipient wetness impregnation of various desilicated MOR obtained by alkaline treatment using NaOH concentrations ranging from 0.1 to 0.5 M. The zeolite structural changes upon modification were investigated by several techniques including powder X-ray diffraction,Al-27 and Si-29 MAS-NMR spectroscopy, N-2 adsorption, pyridine adsorption followed by infrared spectroscopy and the catalytic model reaction of m-xylene transformation. For low alkaline concentration the zeolite acidity is preserved, along with a slight increase of the volume correspondent to the larger micropores due to the removal of extra-framework debris already existent at the parent zeolite. At higher NaOH concentrations there is a significant loss of crystalinity and acidity as well as the formation of mesoporosity. The characterization of the metal function shows similar patterns for Pt-HMOR and Pt-M/0.1 samples, with Pt particles located mainly inside the inner porosity. In contrast, large Pt particles become visible at the intercrystalline mesoporosity of MOR crystals developed during the desilication treatments at severe alkaline conditions. The catalytic results obtained for n-hexane hydroisomerization showed an improved selectivity for dibranched over monobranched isomers for Pt-M/0.1 sample, likely due to the preservation of the support acidity and the slight enlargement of the micropores. This work is a new example in which the mesoporous development does not improve the catalytic efficiency of the zeolites, whereas mild alkaline desilication might be considered as an effective solution to produce customized catalysts with enhanced performance for a given application. (C) 2014 Elsevier B.V. All rights reserved.
- Desilication of MOR zeolite: Conventional versus microwave assisted heatingPublication . Paixão, V.; Monteiro, R.; Andrade, M.; Fernandes, A.; Rocha, J.; Carvalho, A. P.; Martins, A.MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of m-xylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis. (C) 2011 Elsevier B.V. All rights reserved.