Browsing by Author "Lavareda, Guilherme"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- A CMOS micro power switched-capacitor DC-DC step-up converter for indoor light energy harvesting applicationsPublication . Carvalho, Carlos Manuel Ferreira; Lavareda, Guilherme; Amaral, Ana; Carvalho, Carlos Nunes de; Paulino, Nuno Filipe Silva VeríssimoThis paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
- Conducting indium oxide films on plastic substrates by plasma enhanced reactive thermal evaporationPublication . Vygranenko, Yuri; Fernandes, Miguel; Vieira, Manuela; Lavareda, Guilherme; CARVALHO, CARLOS; Brogueira, P.; Amaral, AnaThis work reports on low temperature deposition of conducing indium oxide films by a radio-frequency plasma enhanced reactive thermal evaporation (rf-PERTE) technique. The films were deposited on polyethylene terephthalate (PET) without intentional heating of the substrate and at elevated temperatures up to 150 degrees C. The material stoichiometry was accurately controlled by adjusting deposition conditions including the oxygen flow, process pressure, pumping speed, and RF-power. Besides, fine turning of the critical deposition parameters during the deposition was implemented by measuring the variation of film conductance in-situ. The film morphology was analyzed by scanning electron microscopy. Hall effect measurements were also performed to determine the relation between the deposition conditions and the electrical properties of the films. A resistivity of 4 x 10(-4) Omega-cm was reached under optimized deposition conditions. A 250 nm-thick coating with 16 Omega/sq sheet resistance shows an 82% peak value of transmittance in the visible spectral range.
- A DC-DC Step-Up mu-Power Converter for Energy Harvesting Applications, Using Maximum Power PointTracking, Based on Fractional Open Circuit VoltagePublication . Carvalho, Carlos; Lavareda, Guilherme; Paulino, NunoA DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
- Etchability dependence of InOx and ITO thin films by plasma enhanced reactive termal evaporation on structural properties and deposition conditionsPublication . Amaral, Ana; Lavareda, Guilherme; Carvalho, Carlos Nunes de; Andre, Vania; Vygranenko, Yuri; Fernandes, Miguel; Brogueira, PedroIndium oxide (InOx) and indium tin oxide (ITO) thin films were deposited on glass substrates by plasma enhanced reactive thermal evaporation (PERTE) at different substrate temperatures. The films were then submitted to two etching solutions with different chemical reactivity: i) HNO3 (6%), at room temperature; ii) HCl (35%): (40 °Be) FeCl3 (1:1), at 40 °C. The dependence of the etchability of the films on the structural and deposition conditions is discussed. Previously to etching, structural characterization was made. X-ray diffraction showed the appearance of a peak around 2θ=31° as the deposition temperature increases from room temperature to 190 °C, both for ITO and InOx. AFM surface topography and SEM micrographs of the deposited films are consistent with the structural properties suggested by X-ray spectra: as the deposition temperature increases, the surface changes from a finely grained structure to a material with a larger-sized grain or/and agglomerate structure of the order of 250-300 nm. The roughness Rq varies from 0.74 nm for the amorphous tissue to a maximum of 10.83 nm for the sample with the biggest crystalline grains. Raman spectra are also presented.
- InOx thin films deposited by plasma assisted evaporation: application in light shuttersPublication . Merino, E. G.; Almeida, Pedro L.; Carvalho, Carlos Nunes de; Brogueira, P.; Amaral, A.; Lavareda, GuilhermeAn integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.
- Photoconductivity kinetics of indium sulfofluoride thin films starPublication . Vygranenko, Yuri; Fernandes, Miguel; Vieira, Manuela; Lavareda, Guilherme; CARVALHO, CARLOS; Brogueira, Pedro; Amaral, AnaIndium sulfofluoride is an amorphous wide-gap semiconductor exhibiting high sensitivity to UV radiation. This work reports on the kinetics of photoconductivity in indium sulfofluoride thin films along with their electrical and optical properties. The films were deposited by radio-frequency plasma-enhanced reactive thermal evaporation. The film characterization includes electrical, optical, and photoconductivity measurements. The films are highly transparent in the visible-infrared range due to an indirect bandgap of 2.8 eV. The spectral response measurements have revealed existence of the band tail states. The synthesized compound is highly resistive (similar to 200 M ohm-cm at 300 K) and exhibits extremely slow photocurrent relaxations. Photoconductivity kinetics was studied under various excitation conditions. A dependence of the photocurrent on the incident photon flux was also determined.
- A Step-up mu-Power Converter for Solar Energy Harvesting Applications, using Hill Climbing Maximum Power Point TrackingPublication . Carvalho, Carlos; Lameiro, José; Paulino, Nuno; Lavareda, GuilhermeThis paper presents a step-up micro-power converter for solar energy harvesting applications. The circuit uses a SC voltage tripler architecture, controlled by an MPPT circuit based on the Hill Climbing algorithm. This circuit was designed in a 0.13 mu m CMOS technology in order to work with an a-Si PV cell. The circuit has a local power supply voltage, created using a scaled down SC voltage tripler, controlled by the same MPPT circuit, to make the circuit robust to load and illumination variations. The SC circuits use a combination of PMOS and NMOS transistors to reduce the occupied area. A charge re-use scheme is used to compensate the large parasitic capacitors associated to the MOS transistors. The simulation results show that the circuit can deliver a power of 1266 mu W to the load using 1712 mu W of power from the PV cell, corresponding to an efficiency as high as 73.91%. The simulations also show that the circuit is capable of starting up with only 19% of the maximum illumination level.