Browsing by Author "Glaus, Seraina"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Electroweak corrections in a pseudo Nambu-Goldstone Dark Matter model revisitedPublication . Glaus, Seraina; Muehlleitner, Margarete; Mueller, Jonas; Patel, Shruti; Roemer, Tizian; Santos, RuiHaving so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.
- Electroweak corrections to dark matter direct detection in a vector dark matter modelPublication . Glaus, Seraina; Muehlleitner, Milada Margarete; Mueller, Jonas; Patel, Shruti; Santos, RuiAlthough many astrophysical and cosmological observations point towards the existence of Dark Matter (DM), the nature of the DM particle has not been clarified to date. In this paper, we investigate a minimal model with a vector DM (VDM) candidate. Within this model, we compute the cross section for the scattering of the VDM particle with a nucleon. We provide the next-to-leading order (NLO) cross section for the direct detection of the DM particle. Subsequently, we study the phenomenological implications of the NLO corrections, in particular with respect to the sensitivity of the direct detection DM experi- ments. We further investigate more theoretical questions such as the gauge dependence of the results and the remaining theoretical uncertainties due to the applied approximations.
- Electroweak corrections to dark matter direct detection in the dark singlet phase of the N2HDMPublication . Glaus, Seraina; Mühlleitner, Margarete; Müller, Jonas; Patel, Shruti; Santos, RuiDirect detection experiments are the only way to obtain indisputable evidence of the existence of dark matter (DM) in the form of a particle. These experiments have been used to probe many extensions of the Standard Model (SM) that provide DM candidates. Experimental results like the latest ones from XENON1T lead to severe constraints in the parameter space of many of the proposed models. In a simple extension of the SM, the addition of a complex singlet to the SM content, one-loop corrections need to be taken into account because the tree-level cross section is proportional to the DM velocity, and therefore negligible. In this work we study the case of a DM particle with origin in a singlet but in a larger framework of an extension by an extra doublet together with the extra singlet providing the DM candidate. We show that in the region of interest of the present and future direct detection experiments, electroweak corrections are quite stable with a K-factor very close to one.