Browsing by Author "Delgado, Margarida"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Bisphenol A alters transcript levels of biomarker genes for major depressive disorderPublication . Ribeiro-Varandas, Edna; Pereira, H. Sofia; Viegas, Wanda; Delgado, MargaridaMajor depressive disorder is a moderately heritable disorder characterized by one or more major depressive episodes. Laboratory tests to suport MDD diagnosis are not available. Diagnosis and treatment are based on various signs and symptoms not always fitting into strict diagnostic categories. Research for biological markers of neuropsychiatric disorders has been a challenge.
- Bisphenol A alters transcript levels of biomarker genes for major depressive disorder in vascular endothelial cells and colon cancer cellsPublication . Ribeiro-Varandas, Edna; Pereira, H. Sofia; Viegas, Wanda; Delgado, MargaridaBisphenol A (BPA) is capable of mimicking endogenous hormones with potential consequences for human health and BPA exposure has been associated with several human diseases including neuropsychiatric disorders. Here, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results show that BPA at low concentrations (10 ng/mL and 1 μg/mL) induces differential transcript levels of four biomarker genes for Major Depressive Disorder (MDD) in HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). These results substantiate increasing concerns of BPA exposure in levels currently detected in humans.
- Bisphenol A at the reference level counteracts doxorubicin transcriptional effects on cancer related genes in HT29 cellsPublication . Delgado, Margarida; Ribeiro-Varandas, EdnaHuman exposure to Bisphenol A (BPA) results mainly from ingestion of food and beverages. Information regarding BPA effects on colon cancer, one of the major causes of death in developed countries, is still scarce. Likewise, little is known about BPA drug interactions although its potential role in doxorubicin (DOX) chemoresistance has been suggested. This study aims to assess potential interactions between BPA and DOX on HT29 colon cancer cells. HT29 cell response was evaluated after exposure to BPA, DOX, or co-exposure to both chemicals. Transcriptional analysis of several cancer-associated genes (c-fos, AURKA, p21, bcl-xl and CLU) shows that BPA exposure induces slight up-regulation exclusively of bcl-xl without affecting cell viability. On the other hand, a sub-therapeutic DOX concentration (40 nM) results in highly altered c-fos, bcl-xl, and CLU transcript levels, and this is not affected by co-exposure with BPA. Conversely, DOX at a therapeutic concentration (4 μM) results in distinct and very severe transcriptional alterations of c-fos, AURKA, p21 and CLU that are counteracted by co-exposure with BPA resulting in transcript levels similar to those of control. Co-exposure with BPA slightly decreases apoptosis in relation to DOX 4 μM alone without affecting DOX-induced loss of cell viability. These results suggest that BPA exposure can influence chemotherapy outcomes and therefore emphasize the necessity of a better understanding of BPA interactions with chemotherapeutic agents in the context of risk assessment.
- Bisphenol A at the reference level counteracts doxorubicin transcriptional effects on cancer related genes in HT29 cellsPublication . Delgado, Margarida; Ribeiro-Varandas, EdnaHuman exposure to Bisphenol A (BPA) results mainly from ingestion of food and beverages. Information regarding BPA effects on colon cancer, one of the major causes of death in developed countries, is still scarce. Likewise, little is known about BPA drug interactions although its potential role in doxorubicin (DOX) chemoresistance has been suggested. This study aims to assess potential interactions between BPA and DOX on HT29 colon cancer cells. HT29 cell response was evaluated after exposure to BPA, DOX, or co-exposure to both chemicals. Transcriptional analysis of several cancer-associated genes (c-fos, AURKA, p21, bcl-xl and CLU) shows that BPA exposure induces slight up-regulation exclusively of bcl-xl without affecting cell viability. On the other hand, a sub-therapeutic DOX concentration (40nM) results in highly altered c-fos, bcl-xl, and CLU transcript levels, and this is not affected by co-exposure with BPA. Conversely, DOX at a therapeutic concentration (4μM) results in distinct and very severe transcriptional alterations of c-fos, AURKA, p21 and CLU that are counteracted by co-exposure with BPA resulting in transcript levels similar to those of control. Co-exposure with BPA slightly decreases apoptosis in relation to DOX 4μM alone without affecting DOX-induced loss of cell viability. These results suggest that BPA exposure can influence chemotherapy outcomes and therefore emphasize the necessity of a better understanding of BPA interactions with chemotherapeutic agents in the context of risk assessment.
- Efeitos do xenoestrógeneo Bisfenol A no envelhecimento celularPublication . Ribeiro-Varandas, Edna; Pereira, H. Sofia; Viegas, Wanda; Delgado, Margarida; Escola Superior de Tecnologia da Saúde de LisboaO Bisphenol A (BPA) é um xenoestrógeneo sintético capaz de ativar diversas vias de sinalização associadas a estrogénios. Este composto é utilizado na produção de plástico e das resinas de cola Epoxy, encontrando-se presente numa grande variedade de produtos para consumo humano. Consequentemente a exposição humana ao BPA é considerada generalizada e contínua. Estudos epidemiológicos verificaram correlação entre níveis elevados de BPA na urina e patogénese de doenças associadas ao envelhecimento celular como a aterosclerose. Neste estudo foram avaliados os efeitos da exposição prolongada ao BPA de concentrações encontradas em amostras biológicas humanas associadas a exposição ambiental e ocupacional, nomeadamente 10 ng/mL e 1 μg/ml.
