Browsing by Author "Cunha, Alexandre"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ultrafast laser texturing of Ti-6Al-4V surfaces for biomedical applicationsPublication . Cunha, Alexandre; Oliveira, Vitor; Serro, Ana Paula; Zouani, Omar El-Farouk; Almeida, Amélia; Durrieu, Marie-Christine; Vilar, RuiBy controlling processing parameters such as the average fluence, number of laser pulses and beam polarization direction, different types of multiscale surface textures were produced on Ti-6Al-4V surfaces by ultrafast laser processing. The samples were textured in ambient atmosphere using an Yb:KYW chirped-pulse-regenerative amplification laser with a wavelength of 1030 nm and pulse duration of 500 fs. The wetting of simulated biological fluids as well as the human mesenchymal stem cells (hMSCs) behavior were assessed. Three types of textured surfaces were tested, consisting of: (1) Laser-Induced Periodic Surface Structures-LIPSS; (2) nanopillars-like structures; and (3) LIPSS overlapped to microcolumns. The laser textured surfaces present hydrophilic behavior and high affinity for HBSS (Hank's balanced salt solution). Cell spreading and adhesion strength is reduced by the laser nanotextures as compared to a polished control surface. Cytoskeleton stretching and stress fibers were clearly observed on LIPSS while significant filopodia formation was verified on nanopillars. There was no cell proliferation on the laser nanotextured surfaces. Ultrafast laser texturing of Ti-6Al-4V surfaces is an efficient technique for increasing surface wettability, and is potentially useful as a technique to control the behavior of hMSCs by changing the cytoskeleton shape, FAPs distribution and area, and proliferation.
- Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfacesPublication . Cunha, Alexandre; Serro, Ana Paula; Oliveira, Vitor; Almeida, Amélia; Vilar, Rui; DURRIEU, Marie-ChristineThe aim of the present work was to investigate the wetting behaviour of biomedical grade Ti-6Al-4V alloy surfaces textured by a femtosecond laser treatment. The material was treated in ambient atmosphere using an Yb: KYW chirped-pulse-regenerative amplification laser with a wavelength of 1030 nm and a pulse duration of 500 fs. Four main types of surface textures were obtained depending on the processing parameters and laser treatment method. These textures consist of: (1) nanoscale laser-induced periodic surface structures (LIPSS); (2) nanopillars; (3) a bimodal roughness distribution texture formed of LIPSS overlapping microcolumns; (4) a complex texture formed of LIPSS overlapping microcolumns with a periodic variation of the columns size in the laser scanning direction. The wettability of the surfaces was evaluated by the sessile drop method using distilled-deionized (DD) water and Hank's balanced salt solution (HBSS) as testing liquids. The laser treated surfaces present a hydrophilic behaviour as well as a high affinity for the saline solution, with equilibrium contact angles in the ranges 24.1-76.2. for DD water and 8.4-61.8. for HBSS. The wetting behaviour is anisotropic, reflecting the anisotropy of the surface textures. (c) 2012 Elsevier B.V. All rights reserved.