Browsing by Author "Correia, Luís M. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ultrasound and radiation-induced catalytic oxidation of 1-phenylethanol to acetophenone with iron-containing particulate catalystsPublication . Soliman, Mohamed Mostafa Aboelhassan; Kopylovich, Maximilian N.; Alegria, Elisabete; Da Costa Ribeiro, Ana Paula; Ferraria, Ana Maria; Rego, Ana; Correia, Luís M. M.; Saraiva, Marta S.; Pombeiro, ArmandoIron-containingparticulatecatalystsof0.1–1 µmsizewerepreparedbywetandball-milling procedures from common salts and characterized by FTIR, TGA, UV-Vis, PXRD, FEG-SEM, and XPS analyses. It was found that when the wet method was used, semi-spherical magnetic nanoparticles were formed, whereas the mechanochemical method resulted in the formation of nonmagnetic microscale needles and rectangles. Catalytic activity of the prepared materials in the oxidation of 1-phenylethanol to acetophenone was assessed under conventional heating, microwave (MW) irradiation, ultrasound (US), and oscillating magnetic field of high frequency (induction heating). In general, the catalysts obtained by wet methods exhibit lower activities, whereas the materials prepared by ball milling afford better acetophenone yields (up to 83%). A significant increase in yield (up to 4 times) was observed under the induction heating if compared to conventional heating. The study demonstrated that MW, US irradiations, and induction heating may have great potential as alternative ways to activate the catalytic system for alcohol oxidation. The possibility of the synthesized material to be magnetically recoverable has been also verified.
- Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcoholPublication . Correia, Luís M. M.; Soliman, Mohamed Mostafa Aboelhassan; Granadeiro, Carlos; Balula, Salete; Martins, Luisa; Pombeiro, Armando; Alegria, ElisabeteThe neutral trichloro[hydrotris(1-pyrazolyl)methane]vanadium(III) [VCl3(Tpm)] (Tpm = HC(pz)(3); pz = pyrazolyl) C-scorpionate complex was immobilized on amine-functionalized mesoporous silica (aptesSBA-15) via an impregnation method forming the [VCl3(Tpm)]@aptesSBA-15 composite. The immobilization of the vanadium compound was confirmed by several characterization techniques, namely SEM/EDS, powder XRD, FT-IR/ATR, ICP and BET surface area analysis, revealing the successful incorporation of the complex, and confirming the structural and morphological preservation of the porous support and the vanadium complex. The vanadium composite was tested as heterogeneous catalyst for the peroxidative oxidation of benzyl alcohol under mild conditions and its catalytic performance was compared to that of the analogous homogeneous [VCl3(Tpm)] complex. The catalytic studies were extended to other substrates. The effect of various parameters, such as amount and type of oxidant, catalyst and additives, temperature and reaction time were investigated allowing to reach overall yields of ca. 60% and turnover numbers (TONs) up to ca. 7.6 x 10(3). The results obtained demonstrated the higher performance of the heterogeneous catalyst using much less [VCl3(Tpm)] complex under a solvent-free system. Furthermore, consecutive reaction cycles could be performed, showing its recycling capacity. Structural stability was also investigated, indicating the viability of the vanadium C-scorpionate composite as catalyst for other oxidative reactions with high industrial interest.