ISEL - Eng. Quim. Biol. - Posters
Permanent URI for this collection
Browse
Browsing ISEL - Eng. Quim. Biol. - Posters by Author "D. Barata, Patrícia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Highly selective and sensitive detection of toxic metals by fluorescent Bicyclic Calix[4]arene-based sensorsPublication . D. Barata, Patrícia; Fialho, Carina B.; Prata, José Virgílio; Costa, Alexandra I.Development of fast and portable chemosensors for trace detection of toxic metals, in particular those which are mostly present in the environment due to natural phenomenon and human activities (e.g. cadmium, mercury and lead), is a challenging area of current research.1 Calixarenes are one of the most widespread scaffolds in host-guest chemistry because of their rigid structures, which make them perfect candidates for complexation studies with ions and neutral molecules. Metal ions commonly bind at the lower rim of the calixarene moiety. Host-guest interaction can be enhanced by proper choice of additional binding sites containing nitrogen, oxygen, sulfur or a combination of them, and specifically designed calixarene architectures. Exploring the inherent capabilities of certain fluorescent calixarene-based compounds for establishing strong host:guest interactions, several sensing materials have been developed and tested by us towards the detection of neutral molecular species.2. We report in this communication the chemosensing ability of CALIX-OCP-CBZ and CALIX-OCP (Scheme 1) towards the detection of toxic metals, either by using the sensing element in fluid phase or solid state.
- Metal ion recognition induced by calix[4]arene carbazole containing polymersPublication . D. Barata, Patrícia; Costa, Alexandra; Fialho, Carina B.; Prata, José VirgílioSensing and recognition of ions and neutral molecules via synthetic receptors are of current interest in supramolecular chemistry because of their significant importance in several areas, such as chemistry, biology and environment. Compared with small molecules, polymers-based sensors displayed several importante advantages like signal amplification. In this way, the incorporation of molecular receptors such as calixarenes with conjugated polymer backbones is expected to enhance the signaling events related to a host–guest interaction. The preorganized binding sites, easy derivatization and flexible three-dimensional steric structures make calixarenes ideal construction platforms for molecular design to generate fluorescente receptors. The use of calixarenes as supramolecular scaffolds for this type of architectures has been explored and the sensing abilities of resultant polymers toward metal and molecular ions established. Based on the high sensitivity shown by the non-polymeric analogue CALIX-OCP-CBZ (notshown), to toxic metal cations, we decide two extend the sensing study to polymer materials. Herein, we report the preliminar results of the chemosensing ability of a new bicyclic calix[4]arene-carbazole-polymer (CALIX-OCP-PPE-CBZ) towards the detection of toxic metals in fluid phase.