Logo do repositório
 
Publicação

Intelligent traffic control strategies for VLC-connected vehicles and pedestrian flow management

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorGalvão, Gonçalo
dc.contributor.authorVieira, Manuela
dc.contributor.authorVieira, Manuel Augusto
dc.contributor.authorVéstias, Mário
dc.contributor.authorLouro, Paula
dc.date.accessioned2026-01-05T14:10:50Z
dc.date.available2026-01-05T14:10:50Z
dc.date.issued2025-11-08
dc.descriptionThis research received support from FCT—Fundação para a Ciência e a Tecnologia, through the Research Unit CTS—Center of Technology and Systems, with references UIDB/00066 and IPL/IDI&CA2024/INUTRAM_ISEL
dc.description.abstractUrban traffic congestion leads to daily delays, driven by outdated, rigid control systems. As vehicle numbers grow, fixed-phase signals struggle to adapt to real-time conditions. This work presents a decentralized Multi-Agent Reinforcement Learning (MARL) system to manage a traffic cell composed of five intersections, introducing the novel Strategic Anti-Blocking Phase Adjustment (SAPA) module, developed to enable dynamic phase time adjustments. The goal is to optimize arterial traffic flow by adapting strategies to different traffic generation patterns, simulating priority movements along circular or radial arterials, such as inbound or outbound city flows. The system aims to manage diverse scenarios within a cell, with the long-term goal of scaling to city-wide networks. A Visible Light Communication (VLC) infrastructure is integrated to support real-time data exchange between vehicles and infrastructure, capturing vehicle position, speed, and pedestrian presence at intersections. The system is evaluated through multiple performance metrics, showing promising results: reduced vehicle queues and waiting times, increased average speeds, and improved pedestrian safety and overall flow management. These outcomes demonstrate the system’s potential to deliver adaptive, intelligent traffic control for complex urban environments.eng
dc.description.sponsorshipIPL/IDI&CA2024/INUTRAM_ISEL - Instituto Politécnico de Lisboa
dc.identifier.citationGalvão, G., Vieira, M., Vieira, M. A., Véstias, M., & Louro, P. (2025). Intelligent traffic control strategies for VLC-connected vehicles and pedestrian flow management. Sensors, 25(22), 6843. https://doi.org/10.3390/s25226843
dc.identifier.doi10.3390/s25226843
dc.identifier.eissn1424-8220
dc.identifier.urihttp://hdl.handle.net/10400.21/22430
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI AG
dc.relationCentre of Technology and Systems
dc.relation.hasversionhttps://www.mdpi.com/1424-8220/25/22/6843
dc.relation.ispartofSensors
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDeep reinforcement learning DRL
dc.subjectVisible light communication (VLC)
dc.subjectMulti-agent systems
dc.subjectUrban traffic management
dc.subjectAutonomous vehicles
dc.subjectTraffic management and efficiency
dc.titleIntelligent traffic control strategies for VLC-connected vehicles and pedestrian flow managementeng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre of Technology and Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00066%2F2020/PT
oaire.citation.endPage35
oaire.citation.issue22
oaire.citation.startPage1
oaire.citation.titleSensors
oaire.citation.volume25
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isProjectOfPublicationf8f1ae32-2df8-4a1e-8a9c-e6f7d37e69be
relation.isProjectOfPublication.latestForDiscoveryf8f1ae32-2df8-4a1e-8a9c-e6f7d37e69be

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Intelligent_MVieira.pdf
Tamanho:
7.17 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: