Repository logo
 
Publication

Parallel hyperspectral unmixing method via split augmented lagrangian on GPU

dc.contributor.authorSevilla, Jorge
dc.contributor.authorMartín, Gabriel
dc.contributor.authorNascimento, Jose
dc.date.accessioned2017-03-21T08:43:49Z
dc.date.available2017-03-21T08:43:49Z
dc.date.issued2016-05
dc.description.abstractOne of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSEVILLA, Jorge; MARTÍN, Gabriel; NASCIMENTO, José M. P. – Parallel hyperspectral unmixing method via split augmented lagrangian on GPU. IEEE Geoscience and Remote Sensing Letters. ISSN 1545-598X. Vol. 13, N.º 5 (2016), pp. 626-630.pt_PT
dc.identifier.doi10.1109/LGRS.2016.2522561pt_PT
dc.identifier.issn1545-598X
dc.identifier.issn1558-0571
dc.identifier.urihttp://hdl.handle.net/10400.21/6880
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.publisherversionhttp://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7429716pt_PT
dc.subjectIndex Termspt_PT
dc.subjectgraphics processing units (GPUs)pt_PT
dc.subjecthyperspectral endmember extractionpt_PT
dc.subjectonboard processingpt_PT
dc.subjectsimplex identification via split augmented Lagrangian (SISAL)pt_PT
dc.titleParallel hyperspectral unmixing method via split augmented lagrangian on GPUpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage630pt_PT
oaire.citation.issue5pt_PT
oaire.citation.startPage626pt_PT
oaire.citation.titleIEEE Geoscience and Remote Sensing Letterspt_PT
oaire.citation.volume13pt_PT
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Parallel_JMPNascimento_ADEETC.pdf
Size:
1022.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: