| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 2.37 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A radiografia do tórax permanece uma pedra angular da imagiologia de diagnóstico em todo o mundo. A sua capacidade de fornecer informações diagnósticas críticas, especialmente nas patologias pneumológicas, combinada com a acessibilidade, relação custo-eficácia e resultados rápidos, realça o seu papel insubstituível nos cuidados de saúde globais. Na radiografia do tórax, o correto posicionamento do paciente e a desprojeção das omoplatas é essencial. A sobreposição aos pulmões pode ocultar detalhes cruciais, potencialmente enganadores para médicos novatos e estudantes de radiologia. Garantir uma técnica de aquisição de imagem clara é fundamental para a deteção precisa de anomalias pulmonares. Ao tirar partido das capacidades da inteligência artificial (IA), este projeto visa desenvolver um modelo para detetar e segmentar a sobreposição da omoplata ao pulmão na radiografia frontal do tórax. Recorreu-se ao dataset público de radiografia do tórax do NIH, onde os 28.868 pacientes únicos com imagens de radiografia do tórax foram pré-processados. Posteriormente, um modelo PSPNet pré-treinado da biblioteca Torchxrayvision phyton foi utilizado para segmentar as principais estruturas anatómicas identificadas num exame de radiografia do tórax frontal. O algoritmo detetou a omoplata em 99.8% dos exames, sendo que 40% apresentaram sobreposição da omoplata. Verificou-se uma relação linear moderada, R=0.673, p<0.05, entre os lados esquerdo e direito, sugerindo um aumento simultâneo nas percentagens de sobreposição. Conclui-se que algoritmo desenvolvido deteta com eficácia a sobreposição da omoplata nas imagens de radiografia do tórax frontal, tornando-o numa valiosa ferramenta educacional e de controlo de qualidade da imagem. A sua sobreposição, muitas vezes mínima, denota a importância crucial do rigor da técnica de posicionamento por parte dos técnicos superiores de radiologia.
Abstract Chest x-ray remains a cornerstone of diagnostic radiology worldwide. Its ability to provide critical diagnostic information, especially on pneumological medical conditions, combined with its accessibility, cost-effectiveness and rapid results, underscores its irreplaceable role in global healthcare. In chest x-ray image, correct scapula positioning is essential. Overlapping with lungs can hide crucial details, potentially misleading novice clinicians and radiography students. Ensuring clear imaging technique is key for accurate lung anomaly detection. Leveraging AI’s capabilities, this project aims to develop a model to detect and segment the scapula-lung overlap in frontal chest x-ray. Using the NIH chest x-ray public dataset, the 28.868 unique patients with frontal chest x-ray images were pre-processed. Secondly, a pre-trained PSPNet model from Torchxrayvision phyton library was used to segment the principal anatomic structures identified in a chest x-ray frontal exam. The algorithm detected the scapula in 99.8% of exams, with 40% showing scapula overlay. A moderate linear relationship, R=0.673, p<0.05, exists between sides, suggesting simultaneous increase in overlap percentages. The developed algorithm effectively detects scapula overlap in frontal x-ray images, making it valuable for educational and quality assessment tools. Overlap, often minimal, suggests crucial positioning technique consistency from radiographers.
Abstract Chest x-ray remains a cornerstone of diagnostic radiology worldwide. Its ability to provide critical diagnostic information, especially on pneumological medical conditions, combined with its accessibility, cost-effectiveness and rapid results, underscores its irreplaceable role in global healthcare. In chest x-ray image, correct scapula positioning is essential. Overlapping with lungs can hide crucial details, potentially misleading novice clinicians and radiography students. Ensuring clear imaging technique is key for accurate lung anomaly detection. Leveraging AI’s capabilities, this project aims to develop a model to detect and segment the scapula-lung overlap in frontal chest x-ray. Using the NIH chest x-ray public dataset, the 28.868 unique patients with frontal chest x-ray images were pre-processed. Secondly, a pre-trained PSPNet model from Torchxrayvision phyton library was used to segment the principal anatomic structures identified in a chest x-ray frontal exam. The algorithm detected the scapula in 99.8% of exams, with 40% showing scapula overlay. A moderate linear relationship, R=0.673, p<0.05, exists between sides, suggesting simultaneous increase in overlap percentages. The developed algorithm effectively detects scapula overlap in frontal x-ray images, making it valuable for educational and quality assessment tools. Overlap, often minimal, suggests crucial positioning technique consistency from radiographers.
Description
Keywords
Inteligência artificial Radiografia Tórax Radiologia convencional Controlo de qualidade Aprendizagem automática Deep learning CAD Artificial intelligence Radiography Thorax Conventional radiology Quality assurance Machine learning
