Repository logo
 
Publication

A deep learning approach to identify not suitable for work images

dc.contributor.authorBicho, Daniel
dc.contributor.authorJ. Ferreira, Artur
dc.contributor.authorDatia, Nuno
dc.date.accessioned2020-11-06T12:05:51Z
dc.date.available2020-11-06T12:05:51Z
dc.date.issued2020
dc.description.abstractWeb Archiving (WA) deals with the preservation of portions of the World Wide Web (WWW) allowing their availability for the future. Arquivo.pt is a WA initiative holding a huge amount of content, including image files. However, some of these images contain nudity and pornography, that can be offensive for the users, and thus being Not Suitable For Work (NSFW). This work proposes a solution to classify NSFW images found at Arquivo.pt, with deep neural network approaches. A large dataset of images is built using Arquivo.pt data and two pre-trained neural network models, namely ResNet and SqueezeNet, are evaluated and improved for the NSFW classification task, using the dataset. The evaluation of these models reported an accuracy of 93% and 72%, respectively. After a fine tuning stage, the accuracy of these models improved to 94% and 89%, respectively. The proposed solution is integrated into the Arquivo.pt Image Search System, available at https://arquivo.pt/images.jsp.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBICHO, Daniel; FERREIRA, Artur; DATIA, Nuno – A deep learning approach to identify not suitable for work images. i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers. ISSN 2182-4010. Vol. 6, N.º 1 (2020) ID-3, pp. 1-11pt_PT
dc.identifier.issn2182-4010
dc.identifier.urihttp://hdl.handle.net/10400.21/12354
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherISELpt_PT
dc.subjectDeep learningpt_PT
dc.subjectDeep neural networkspt_PT
dc.subjectImage classificationpt_PT
dc.subjectNot suitable for work imagespt_PT
dc.subjectResNetpt_PT
dc.subjectSqueezeNetpt_PT
dc.titleA deep learning approach to identify not suitable for work imagespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage11pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titlei-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computerspt_PT
oaire.citation.volume6pt_PT
person.familyNameFerreira
person.familyNameDatia
person.givenNameArtur
person.givenNameNuno
person.identifier1049438
person.identifier2587159
person.identifier.ciencia-id091A-96FB-A88C
person.identifier.ciencia-id071F-5CBD-5D83
person.identifier.orcid0000-0002-6508-0932
person.identifier.orcid0000-0003-1600-0227
person.identifier.ridAAL-4377-2020
person.identifier.ridR-7957-2016
person.identifier.scopus-author-id35315359300
person.identifier.scopus-author-id56026178000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication734bfe75-0c68-4cdf-8a87-2aef3564f5bd
relation.isAuthorOfPublication368f1534-fbb8-4e99-994c-1c7104a42bc6
relation.isAuthorOfPublication.latestForDiscovery368f1534-fbb8-4e99-994c-1c7104a42bc6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A deep_AFerreira.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format