Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.27 MB | Adobe PDF |
Advisor(s)
Abstract(s)
In the last decade, the number of forest _res events is growing due to the fast change of earth's climate. Hence, more automatized _re _ghting actions had become necessary. Deep learning had drawn interesting results for pixel level classi_cation for smoke detection, but few systems are proposed for _re ame detection. In this paper, a semantic segmentation approach using Deeplabv3+ architecture for wild_re detection is proposed. The network uses Deeplabv3 architecture as encoder and Atrous Spatial Pyramid Pooling (ASPP) which allows to encode multi-scale information and boost the network performance. In fact, the ASPP block concatenates a stack of parallel Atrous convolutions with graduating rates, which produces a multi-scale feature map that is further resized. The tests were performed on a public dataset, Corsican _re dataset, which contains 1135 RGB images and 640 infrared pictures. The experiments were conducted on two customized datasets, one using the whole dataset within a single channel information (red and infra-red), and another using only the RGB image set that contains information coded in 3 channels. The used dataset is unbalanced, which could induce high precision with very low sensitivity. Therefore, to measure the performance, Dice similarity and Tversky loss functions with cross-entropy are adopted. The capability of Deeplabv3+ was tested with two di_erent backbones, ResNet-18 and ResNet-50, and compared to a very simple Convolutional Neural Network (CNN) architecture with dilated convolution. Four di_erent metrics were used to evaluate the segmentation capability: Accuracy, mean Intersection over Union (IoU), Mean Boundary F1 (BF) Score, and Mean Dice coe_cient. The experimental results demonstrate that the Deeplabv3+ with ResNet-50 backbone and a loss function type Dice or Tversky can accurately detect the _re ame. The given results are very encouraging for further study using deep learning approaches.
Description
Keywords
Wildfire RGB images Segmentation Dilated convolution Atrous Spatial Pyramid Pooling (ASPP)
Citation
HARKAT, H.; NASCIMENTO, José; BERNARDINO, A. – Fire segmentation using a Deeplabv3+ architecture. In Proc. SPIE 11533, Image and Signal Processing for Remote Sensing XXVI. United Kingdom: SPIE, 2020. ISBN 978-151-063-879-2. Pp. 115330M-1-115330M-12
Publisher
SPIE