Repository logo
 
Publication

Symbolic Knowledge Extraction from Trained Neural Networks Governed by Lukasiewicz Logics

dc.contributor.authorLeandro, Carlos
dc.contributor.authorPinheiro Pita, Helder Jorge
dc.contributor.authorMonteiro, Luís
dc.date.accessioned2013-02-17T12:55:25Z
dc.date.available2013-02-17T12:55:25Z
dc.date.issued2011
dc.description.abstractThis work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.por
dc.identifier.citationLEANDRO, Carlos; PITA, Hélder; MONTEIRO, Luis - Symbolic Knowledge Extraction from Trained Neural Networks Governed by Lukasiewicz Logics. Computational Intelligence. ISSN 1860-949X. ISBN 978-3-642-20205-6. Vol. 343 (2011) p. 45-58.por
dc.identifier.isbn978-3-642-20205-6
dc.identifier.issn1860-949X
dc.identifier.urihttp://hdl.handle.net/10400.21/2249
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer-Verlag Berlinpor
dc.subjectAlgorithmpor
dc.subjectLukasiewicz logicspor
dc.titleSymbolic Knowledge Extraction from Trained Neural Networks Governed by Lukasiewicz Logicspor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceBerlinpor
oaire.citation.endPage58por
oaire.citation.startPage45por
oaire.citation.titleComputational Intelligencepor
oaire.citation.volume343por
person.familyNamePinheiro Pita
person.givenNameHelder Jorge
person.identifier.orcid0000-0002-7483-4257
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublicationbe663ed9-4e03-4506-9c3e-50017cea7d0d
relation.isAuthorOfPublication.latestForDiscoverybe663ed9-4e03-4506-9c3e-50017cea7d0d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Symbolic Knowledge Extraction from Trained Neural Networks Governed by Lukasiewicz Logics.rep.pdf
Size:
266.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: