Publication
Short-term load forecasting using time series clustering
dc.contributor.author | Martins, Ana Alexandra | |
dc.contributor.author | Lagarto, João | |
dc.contributor.author | Canacsinh, Hiren | |
dc.contributor.author | Reis, Francisco | |
dc.contributor.author | Cardoso, Maria Margarida | |
dc.date.accessioned | 2023-05-03T14:43:24Z | |
dc.date.available | 2023-05-03T14:43:24Z | |
dc.date.issued | 2022-08-10 | |
dc.description.abstract | Short-term load forecasting plays a major role in energy planning. Its accuracy has a direct impact on the way power systems are operated and managed. We propose a new Clustering-based Similar Pattern Forecasting algorithm (CSPF) for short-term load forecasting. It resorts to a K-Medoids clustering algorithm to identify load patterns and to the COMB distance to capture differences between time series. Clusters' labels are then used to identify similar sequences of days. Temperature information is also considered in the day-ahead load forecasting, resorting to the K-Nearest Neighbor approach. CSPF algorithm is intended to provide the aggregate forecast of Portugal's national load, for the next day, with a 15-min discretization, based on data from the Portuguese Transport Network Operator (TSO). CSPF forecasting performance, as evaluated by RMSE, MAE and MAPE metrics, outperforms three alternative/baseline methods, suggesting that the proposed approach is promising in similar applications. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | MARTINS, Ana; [et al] – Short-term load forecasting using time series clustering. Optimization and Engineering. ISSN 1389-4420. Vol. 23, N.º 4 (2022), pp. 2293-2314. | pt_PT |
dc.identifier.doi | 10.1007/s11081-022-09760-1 | pt_PT |
dc.identifier.eissn | 1573-2924 | |
dc.identifier.issn | 1389-4420 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/15969 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation | IPL/2020/ELForcast_ISEL - Instituto Politécnico de Lisboa | pt_PT |
dc.relation | Business Research Unit - BRU-IUL | |
dc.relation | Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa | |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11081-022-09760-1 | pt_PT |
dc.subject | Clustering time series | pt_PT |
dc.subject | Distance measures | pt_PT |
dc.subject | Load pattern sequence | pt_PT |
dc.subject | Pattern similar | pt_PT |
dc.subject | Pattern Method | pt_PT |
dc.subject | Short-term load forecasting | pt_PT |
dc.title | Short-term load forecasting using time series clustering | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Business Research Unit - BRU-IUL | |
oaire.awardTitle | Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00315%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50021%2F2020/PT | |
oaire.citation.endPage | 2314 | pt_PT |
oaire.citation.issue | 4 | pt_PT |
oaire.citation.startPage | 2293 | pt_PT |
oaire.citation.title | Optimization and Engineering | pt_PT |
oaire.citation.volume | 23 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Martins | |
person.familyName | Lagarto | |
person.familyName | Canacsinh | |
person.familyName | Cardoso | |
person.givenName | Ana Alexandra | |
person.givenName | João | |
person.givenName | Hiren | |
person.givenName | Maria Margarida | |
person.identifier | 1017796 | |
person.identifier.ciencia-id | 2016-88BF-5D0B | |
person.identifier.ciencia-id | 0512-2920-3C9E | |
person.identifier.ciencia-id | 1E13-A798-9EA2 | |
person.identifier.ciencia-id | 3E1B-1DAD-9287 | |
person.identifier.orcid | 0000-0003-3733-6619 | |
person.identifier.orcid | 0000-0002-7047-6210 | |
person.identifier.orcid | 0000-0002-7531-5459 | |
person.identifier.orcid | 0000-0001-6239-7283 | |
person.identifier.scopus-author-id | 34969159800 | |
person.identifier.scopus-author-id | 24758947600 | |
person.identifier.scopus-author-id | 21233265300 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 7174415b-4387-4cc9-97b0-6c2a3e0c88b4 | |
relation.isAuthorOfPublication | 174bfcee-266b-483c-bc13-f187a886014d | |
relation.isAuthorOfPublication | 3e5019e7-e744-49ad-ba1c-7facbb93935d | |
relation.isAuthorOfPublication | 069c85c4-ebe3-4293-b88a-dd066bc288de | |
relation.isAuthorOfPublication.latestForDiscovery | 3e5019e7-e744-49ad-ba1c-7facbb93935d | |
relation.isProjectOfPublication | 15cba76c-cb90-40cd-a2d0-4aeb9338c3ae | |
relation.isProjectOfPublication | 1f3e7ad3-87bb-4203-919b-53592c18fcea | |
relation.isProjectOfPublication.latestForDiscovery | 15cba76c-cb90-40cd-a2d0-4aeb9338c3ae |