Repository logo
 
Publication

Quantifying chaos for ecological stoichiometry

dc.contributor.authorDuarte, Jorge
dc.contributor.authorJanuário, Cristina
dc.contributor.authorMartins, Nuno
dc.contributor.authorSardanyes, Josep
dc.date.accessioned2011-11-24T12:24:40Z
dc.date.available2011-11-24T12:24:40Z
dc.date.issued2010-09
dc.description.abstractThe theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.por
dc.identifier.citationDuarte J, Januário C, Martins N, Sardanyes J. Quantifying chaos for ecological stoichiometry. Chaos. 2010; 20 (3).por
dc.identifier.issn1054-1500
dc.identifier.urihttp://hdl.handle.net/10400.21/529
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherAmer Inst Physicspor
dc.relation.ispartofseries3;033105
dc.subjectBifurcationpor
dc.subjectChaospor
dc.subjectEcologypor
dc.subjectLyapunov methodspor
dc.subjectPoincare mappingpor
dc.subjectPredator-prey systemspor
dc.subjectStoichiometrypor
dc.titleQuantifying chaos for ecological stoichiometrypor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceMelvillepor
oaire.citation.issue20por
oaire.citation.titleChaospor
person.familyNameDuarte
person.familyNameJanuário
person.givenNameJorge
person.givenNameCristina
person.identifier.ciencia-idBC1D-1E83-E2B2
person.identifier.orcid0000-0003-2641-3199
person.identifier.orcid0000-0002-6978-876X
person.identifier.ridG-7261-2011
person.identifier.scopus-author-id35310049800
person.identifier.scopus-author-id56526791400
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication4dbec82a-caa4-4662-b156-af73687e867f
relation.isAuthorOfPublication42a4023b-b4c4-4456-aaba-d97bf8c14d6a
relation.isAuthorOfPublication.latestForDiscovery42a4023b-b4c4-4456-aaba-d97bf8c14d6a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Quantifying chaos for ecological stoichiometry_rep.pdf
Size:
52.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: