Repository logo
 
Publication

Early mortality prediction in intensive care unit patients based on serum metabolomic fingerprint

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Química
dc.contributor.authorAraújo, Rúben Alexandre Dinis
dc.contributor.authorRamalhete, Luís
dc.contributor.authorVon Rekowski, Cristiana
dc.contributor.authorHenrique Fonseca, Tiago Alexandre
dc.contributor.authorBento, Luís
dc.contributor.authorCalado, Cecília
dc.date.accessioned2025-04-03T08:01:49Z
dc.date.available2025-04-03T08:01:49Z
dc.date.issued2024-12-19
dc.description.abstractPredicting mortality in intensive care units (ICUs) is essential for timely interventions and efficient resource use, especially during pandemics like COVID-19, where high mortality persisted even after the state of emergency ended. Current mortality prediction methods remain limited, especially for critically ill ICU patients, due to their dynamic metabolic changes and heterogeneous pathophysiological processes. This study evaluated how the serum metabolomic fingerprint, acquired through Fourier-Transform Infrared (FTIR) spectroscopy, could support mortality prediction models in COVID-19 ICU patients. A preliminary univariate analysis of serum FTIR spectra revealed significant spectral differences between 21 discharged and 23 deceased patients; however, the most significant spectral bands did not yield high-performing predictive models. By applying a Fast-Correlation-Based Filter (FCBF) for feature selection of the spectra, a set of spectral bands spanning a broader range of molecular functional groups was identified, which enabled Naïve Bayes models with AUCs of 0.79, 0.97, and 0.98 for the first 48 h of ICU admission, seven days prior, and the day of the outcome, respectively, which are, in turn, defined as either death or discharge from the ICU. These findings suggest FTIR spectroscopy as a rapid, economical, and minimally invasive diagnostic tool, but further validation is needed in larger, more diverse cohorts.eng
dc.identifier.citationAraújo, R., Ramalhete, L., Von Rekowski, C. P., Fonseca, T. A. H., Bento, L., & R. C. Calado, C. (2024). Early mortality prediction in intensive care unit patients based on serum metabolomic fingerprint. International Journal of Molecular Sciences, 25(24), 13609. https://doi.org/10.3390/ijms252413609
dc.identifier.doihttps://doi.org/10.3390/ijms252413609
dc.identifier.eissn1422-0067
dc.identifier.urihttp://hdl.handle.net/10400.21/21743
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationDSAIPA/DS/0117/2020 - Fundação para a Ciência e a Tecnologia (FCT)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectICU mortality prediction
dc.subjectSerum biomarkers
dc.subjectFTIR spectroscopy
dc.subjectOmics
dc.titleEarly mortality prediction in intensive care unit patients based on serum metabolomic fingerprinteng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage20
oaire.citation.issue24
oaire.citation.startPage1
oaire.citation.titleInternational Journal of Molecular Sciences
oaire.citation.volume25
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAraújo
person.familyNameRamalhete
person.familyNameVon Rekowski
person.familyNameHenrique Fonseca
person.familyNameCalado
person.givenNameRúben Alexandre Dinis
person.givenNameLuís
person.givenNameCristiana
person.givenNameTiago Alexandre
person.givenNameCecília
person.identifier2296066
person.identifier1960990
person.identifier130332
person.identifier.ciencia-id9A18-BFDC-ED95
person.identifier.ciencia-idDF19-022D-AA10
person.identifier.ciencia-id8F1D-1D48-8551
person.identifier.ciencia-id9418-E320-3177
person.identifier.orcid0000-0002-9369-6486
person.identifier.orcid0000-0002-8911-3380
person.identifier.orcid0009-0009-6843-1935
person.identifier.orcid0000-0003-0741-2211
person.identifier.orcid0000-0002-5264-9755
person.identifier.ridE-2102-2014
person.identifier.scopus-author-id57208672678
person.identifier.scopus-author-id6603163260
relation.isAuthorOfPublication9998e940-5e65-4661-8308-afcb56d5df01
relation.isAuthorOfPublication7846e088-851e-47b6-a7bd-d02c9d8f047d
relation.isAuthorOfPublicationaa62d0cd-948b-45a0-9717-459b247dae86
relation.isAuthorOfPublicationd4a391dd-4551-44df-a326-c17e796b0945
relation.isAuthorOfPublicatione8577257-c64c-4481-9b2b-940fedb360cc
relation.isAuthorOfPublication.latestForDiscovery9998e940-5e65-4661-8308-afcb56d5df01

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Early_CCalado.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: