Repository logo
 
Publication

Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSousa, Jorge A. M.
dc.contributor.authorLagarto, João
dc.contributor.authorCamus, Cristina Inês
dc.contributor.authorViveiros, Carla
dc.contributor.authorBarata, Filipe
dc.contributor.authorSilva, Pedro
dc.contributor.authorParaiba, Orlando
dc.date.accessioned2025-07-29T13:19:36Z
dc.date.available2025-07-29T13:19:36Z
dc.date.issued2023-11-15
dc.description.abstractThe EU Renewable Energy Directive 2018/2001 (RED II) has unlocked the participation of local citizens and authorities in collective renewable energy projects through the concept of Renewable Energy Communities (REC). In this context, the present study proposes an optimization model to support REC's investment decisions on the renewable generation portfolio and operational electricity sharing management.The model presented follows an annualized investment optimization approach considering that one REC member can invest in additional renewable generation. A case study of a REC with three members is presented in a framework of four scenarios and results are discussed using the levelized cost of electricity (LCOE) and the marginal realized price concepts. A sensitivity analysis is also performed to address the interannual variability of the solar and wind resources.In the base case scenario, which corresponds to the site-specific conditions of the investing REC member, an overall net revenue of 87 keuro/year was computed. The sensitivity analysis for this scenario showed that the investment is more sensitive to the solar resource, with revenues changing between -3.3% and 0.1% in comparison with the average resource availability.This paper contributes to the existing literature by identifying the main drivers behind the optimal investment decision of a REC, which result from the relationship between the marginal realized price and the levelized cost of the electricity generated by each renewable technology. The results supported by the present model reinforce the benefits of RECs as enablers for the deployment of renewable generation, thus contributing to the decarbonization of the energy systems.eng
dc.identifier.citationSousa, J., Lagarto, J., Camus, C., Viveiros, C., Barata, F., Silva, P., Alegria, R., & Paraiba, O. (2023). Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing. Energy, 283, 1-14. https://doi.org/10.1016/j.energy.2023.128464
dc.identifier.doihttps://doi.org/10.1016/j.energy.2023.128464
dc.identifier.eissn1873-6785
dc.identifier.issn0360-5442
dc.identifier.urihttp://hdl.handle.net/10400.21/21987
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRenewable energy communities
dc.subjectSelf-consumption
dc.subjectHybrid renewable systems
dc.subjectWind energy
dc.subjectSolar energy
dc.subjectInvestment decisions
dc.subjectOptimization
dc.titleRenewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharingeng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage14
oaire.citation.startPage1
oaire.citation.titleEnergy
oaire.citation.volume283
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameSousa
person.familyNameLagarto
person.familyNameCamus
person.familyNameViveiros
person.familyNameBarata
person.familyNameSilva
person.givenNameJorge A. M.
person.givenNameJoão
person.givenNameCristina Inês
person.givenNameCarla
person.givenNameFilipe
person.givenNamePedro
person.identifier2750231
person.identifier418115
person.identifier1232178
person.identifier.ciencia-idF816-08E3-B045
person.identifier.ciencia-id0512-2920-3C9E
person.identifier.ciencia-id4414-1BB5-34CB
person.identifier.ciencia-idAB14-98BC-18C0
person.identifier.ciencia-id6716-149F-4424
person.identifier.ciencia-idC314-1157-FD0C
person.identifier.orcid0000-0002-1110-6586
person.identifier.orcid0000-0002-7047-6210
person.identifier.orcid0000-0002-1118-6467
person.identifier.orcid0000-0001-5096-1633
person.identifier.orcid0000-0003-1019-3646
person.identifier.orcid0000-0002-9178-3623
person.identifier.ridM-1020-2015
person.identifier.ridAAH-7730-2020
person.identifier.ridH-3022-2016
person.identifier.ridB-8512-2008
person.identifier.scopus-author-id55940825700
person.identifier.scopus-author-id24758947600
person.identifier.scopus-author-id56125867800
person.identifier.scopus-author-id8704704700
person.identifier.scopus-author-id55431034700
relation.isAuthorOfPublication69325e43-1f4e-4c1c-8c69-159ac3f93066
relation.isAuthorOfPublication174bfcee-266b-483c-bc13-f187a886014d
relation.isAuthorOfPublication47c01607-bd8a-48be-a867-08b0530bd914
relation.isAuthorOfPublicationd7d24052-35cc-470c-b7b6-4b64087f7392
relation.isAuthorOfPublication8af21a8d-4f59-4205-9b41-62e3f735b9e3
relation.isAuthorOfPublication54c96e27-8c3a-42d9-b751-ebc637c2f478
relation.isAuthorOfPublication.latestForDiscovery69325e43-1f4e-4c1c-8c69-159ac3f93066

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Renewable_JSousa.pdf
Size:
3.28 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: