Publication
GA optimized fractional controller for a wind turbine ride through pitch malfunction
dc.contributor.author | Pandiyan, Surya | |
dc.contributor.author | Valério, Duarte | |
dc.contributor.author | Melicio, Rui | |
dc.contributor.author | Mendes, Victor | |
dc.date.accessioned | 2021-06-22T15:34:03Z | |
dc.date.available | 2021-06-22T15:34:03Z | |
dc.date.issued | 2020-11-27 | |
dc.description.abstract | This paper is about better integration of wind energy into an electric grid, avoiding wind turbine pitch malfunction to become a failure. A fractional-order controller is used in the two-level converters of the wind turbine to reduce the voltage drops during the malfunction. The reduction is attained by an optimization problem for selection of the parameters of the fractional-order control. The optimization problem is a non-convex one, solved by a genetic algorithm together with a model of the wind turbine pitch malfunction. Kriging metamodeling is used to assist in output prediction due its lower computational requirements and its ability to provide a value for the uncertainty of the estimate. A comparison between the Kriging metamodeling and the complete model is presented and conclusions are stated to show the advantage of the Kriging metamodeling. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | PANDIYAN, Surya; [et al] – GA optimized fractional controller for a wind turbine ride through pitch malfunction. In2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). : Prague, Czech Republic: IEEE, 2020. ISBN 978-1-7281-5953-9. Pp. 42-47 | pt_PT |
dc.identifier.doi | 10.1109/CoDIT49905.2020.9263799 | pt_PT |
dc.identifier.eissn | 2576-3555 | |
dc.identifier.isbn | 978-1-7281-5953-9 | |
dc.identifier.isbn | 978-1-7281-5952-2 | |
dc.identifier.isbn | 978-1-7281-5954-6 | |
dc.identifier.issn | 2576-3547 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/13464 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | UID/GEO/04683/2019 - FCT | pt_PT |
dc.relation | UIDB/50022/2020 - FCT, through IDMEC, under LAETA | pt_PT |
dc.relation | UID/EMS/00151/2019 - FCT | pt_PT |
dc.relation.publisherversion | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9263799 | pt_PT |
dc.subject | Wind energy | pt_PT |
dc.subject | Electric grid | pt_PT |
dc.subject | Wind turbine pitch malfunction | pt_PT |
dc.subject | Kriging metamodeling | pt_PT |
dc.title | GA optimized fractional controller for a wind turbine ride through pitch malfunction | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | 29 June-2 July 2020 - Prague, Czech Republic | pt_PT |
oaire.citation.endPage | 47 | pt_PT |
oaire.citation.startPage | 42 | pt_PT |
oaire.citation.title | 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT) | pt_PT |
person.familyName | Valério | |
person.familyName | Melicio | |
person.familyName | Mendes | |
person.givenName | Duarte | |
person.givenName | Rui | |
person.givenName | Victor | |
person.identifier.ciencia-id | CE15-E79C-E7AF | |
person.identifier.ciencia-id | A213-8E2D-0102 | |
person.identifier.orcid | 0000-0001-9388-4308 | |
person.identifier.orcid | 0000-0002-1081-2729 | |
person.identifier.orcid | 0000-0002-4599-477X | |
person.identifier.rid | C-9339-2012 | |
person.identifier.rid | M-4593-2013 | |
person.identifier.rid | D-2332-2012 | |
person.identifier.scopus-author-id | 23010662200 | |
person.identifier.scopus-author-id | 20436053900 | |
person.identifier.scopus-author-id | 55138675600 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 1a484ea2-638a-420d-86a2-21de8217fa4c | |
relation.isAuthorOfPublication | 363aa31a-c2e2-48ef-a2ef-2517bf6b573d | |
relation.isAuthorOfPublication | a86b9291-f23c-4f09-83d7-9ee691696705 | |
relation.isAuthorOfPublication.latestForDiscovery | a86b9291-f23c-4f09-83d7-9ee691696705 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- GA Optimized_VMFMendes.pdf
- Size:
- 872.42 KB
- Format:
- Adobe Portable Document Format