Logo do repositório
 
Miniatura indisponível
Publicação

Hyperspectral unmixing with simultaneous dimensionality estimation

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
HYPERSPECTRAL UNMIXING WITH SIMULTANEOUS.pdf704.69 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This paper is an elaboration of the simplex identification via split augmented Lagrangian (SISAL) algorithm (Bioucas-Dias, 2009) to blindly unmix hyperspectral data. SISAL is a linear hyperspectral unmixing method of the minimum volume class. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. With respect to SISAL, we introduce a dimensionality estimation method based on the minimum description length (MDL) principle. The effectiveness of the proposed algorithm is illustrated with simulated and real data.

Descrição

Palavras-chave

Blind hyperspectral unmixing Minimum volume simplex Minimum Description Length MDL Variable splitting augmented Lagrangian Dimensionality reduction

Contexto Educativo

Citação

NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Hyperspectral unmixing with simultaneous dimensionality estimation. ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods. 2012

Projetos de investigação

Unidades organizacionais

Fascículo