Repository logo
 
Publication

Modeling system based on machine learning approaches for predictive maintenance applications

dc.contributor.authorMartins, João Pedro Serrasqueiro
dc.contributor.authorRodrigues, Filipe Martins
dc.contributor.authorHenriques, Nuno
dc.date.accessioned2020-06-12T11:17:58Z
dc.date.available2020-06-12T11:17:58Z
dc.date.issued2020-06-02
dc.description.abstractIndustry 4.0 must respond to some challenges such as the flexibility and robustness of unexpected conditions, as well as the degree of system autonomy, something that is still lacking. The evolution of Industry 4.0 aims at converting purely mechanical machines into machines with self-learning capacity in order to improve overall performance and contribute to the optimization of maintenance. An important contribution of Industry 4.0 in the industrial sector is predictive maintenance and prescriptive maintenance. This article should be analysed as a methodology proposal to implement an automatic forecasting model in a test bench for the recognition of a machine’s failure and contribute to the development of algorithms for preventive and descriptive maintenance.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMARTINS, João Pedro Serrasqueiro; RODRIGUES, Filipe Martins; HENRIQUES, Nuno Paulo Ferreira – Modeling system based on machine learning approaches for predictive maintenance applications. KnE Engineering. ISSN 2518-6841. Vol. 2020 (2020), pp. 857-871pt_PT
dc.identifier.doi10.18502/keg.v5i6.7105pt_PT
dc.identifier.issn2518-6841
dc.identifier.urihttp://hdl.handle.net/10400.21/11834
dc.language.isoengpt_PT
dc.publisherKnowledge Ept_PT
dc.subjectIndustry 4.0pt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectMachine learningpt_PT
dc.subjectPredictive maintenancept_PT
dc.subjectPrescriptive maintenancept_PT
dc.titleModeling system based on machine learning approaches for predictive maintenance applicationspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage871pt_PT
oaire.citation.startPage857pt_PT
oaire.citation.titleKnE Engineeringpt_PT
oaire.citation.volume2020pt_PT
person.familyNameHenriques
person.givenNameNuno
person.identifier.orcid0000-0003-4994-7636
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication43f27f6d-58cc-43e1-bd61-8aed89aaa838
relation.isAuthorOfPublication.latestForDiscovery43f27f6d-58cc-43e1-bd61-8aed89aaa838

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Modeling_NHenriques.pdf
Size:
341.15 KB
Format:
Adobe Portable Document Format