Repository logo
 
Publication

Hyperspectral unmixing based on mixtures of Dirichlet components

dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José. M.
dc.date.accessioned2015-09-07T13:54:46Z
dc.date.available2015-09-07T13:54:46Z
dc.date.issued2012-03
dc.description.abstractThis paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.por
dc.identifier.citationNASCIMENTO, José M. P.; DIAS-Bioucas, José M. – Hyperspectral unmixing based on mixtures of Dirichlet components. IEEE Transactions on Geoscience and Remote Sensing. ISSN: 0196-2892. Vol. 50, N.º 3 (2012), pp. 863-878.por
dc.identifier.doi10.1109/TGRS.2011.2163941
dc.identifier.issn0196-2892
dc.identifier.urihttp://hdl.handle.net/10400.21/5085
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEE - Inst Electrical Electronics Engineers Incpor
dc.relationInstituto de Telecomunicacoes
dc.relationFundacao para a Ciencia e Tecnologia
dc.subjectAugmented Lagrangian method of multiplierspor
dc.subjectBlind hyperspectral unmixingpor
dc.subjectDependent componentspor
dc.subjectGeneralized expectation maximization (GEM)por
dc.subjectMinimum desciption length (MDL)por
dc.subjectMixtures of Dirichlet densitiespor
dc.titleHyperspectral unmixing based on mixtures of Dirichlet componentspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlacePiscataway
oaire.citation.endPage878por
oaire.citation.issue3por
oaire.citation.startPage863por
oaire.citation.titleIEEE Transactions on Geoscience and Remote Sensingpor
oaire.citation.volume50por
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
HYPERSPECTRAL UNMIXING BASED ON MIXTURES OF DIRICHLET COMPONENTS.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: