Repository logo
 
Publication

Comparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 example

dc.contributor.authorReis, C.
dc.contributor.authorFigueiredo, J.
dc.contributor.authorClain, S.
dc.contributor.authorOmira, R.
dc.contributor.authorBaptista, Maria Ana Carvalho Viana
dc.contributor.authorMIRANDA, JORGE MIGUEL
dc.date.accessioned2019-05-07T11:38:37Z
dc.date.available2019-05-07T11:38:37Z
dc.date.issued2019-02
dc.description.abstractNumerical modelling is a fundamental tool for scenario-based evaluation of hazardous phenomena such as tsunami. Nevertheless, the numerical prediction highly depends on the tool quality and therefore the design of efficient numerical schemes that provide robust and accurate solutions still receives considerable attention. In this paper, we implement two different second-order finite volume numerical schemes deriving from an a priori or an a posteriori limitation procedure and we compare their efficiency in solving the non-conservative shallow-water equations. The numerical schemes assessed here are two variants of the a priori Monotonic Upstream-Centred Scheme for Conservation Laws (MUSCL) and the recent a posteriori multidimensional optimal order detection (MOOD) technique. We benchmark the numerical code, equipped with MUSCL and MOOD techniques, against: (1) a 1-D stationary problem with non-constant bathymetry to assess the second-order convergence of the method when a smooth analytical solution is involved; (2) a 1-D dam-break test to show its capacity to deal with irregular and discontinuous bathymetry in wet zones; and (3) using a simple 1-D analytical tsunami benchmark, single wave on a sloping beach', we show that the classical 1-D shallow-water system can be accurately solved by the second-order finite volume methods. Furthermore, we test the performance of the numerical code for the real-case tsunami of Tohoku-Oki, 2011. Through a set of 2-D numerical simulations, the 2011 tsunami records from both DART and GPS buoys are checked against the simulated results using MUSCL and MOOD. We find that the use of the MOOD technique leads to a better approximation between the numerical solutions and the observations than the MUSCL one. MOOD allows sharper shock capture and generates less numerical diffusion, suggesting it as a promising technique for solving shallow-water problems.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationREIS, C.; [et al] – Comparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 example. Geophysical Journal International. ISSN 0956-540X. Vol. 216, N.º 2 (2019), pp. 958-983pt_PT
dc.identifier.doi10.1093/gji/ggy472pt_PT
dc.identifier.issn0956-540X
dc.identifier.issn1365-246X
dc.identifier.urihttp://hdl.handle.net/10400.21/9947
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherOxford University Presspt_PT
dc.relationPOCI-01-0145-FEDER-028118 - FCTpt_PT
dc.relation.publisherversionhttps://watermark.silverchair.com/ggy472.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAlEwggJNBgkqhkiG9w0BBwagggI-MIICOgIBADCCAjMGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMsesN2x5xm7nlGASsAgEQgIICBGdrY-JBz3mA5YJ9G6CVxAJ1E0F3xiS4CAao1kykTa193QzsxA2adtOc2Pzle2Fhc4S7dp7MNXA13A9vPDOS53D1sXCR1IeDyB3OkfcZ8RK2fq70xkFnR7lK9ivSrhjZc3K_ey4NMcuGWYHJBYk0nhsPkPZWJhwoYrNCiOLz2IS-H9-rZrE-SoaRN5HFvfQ-6DNOed3clS-RlMf_YCYtow-ifAMIFErxeIRSQWYLp13z1CBBJujdChsxOfRIYXr4firfp0LyhIoYx7ggsqgOnwt1tXN89tVaAACh-XGvjdmxUqhh6tLpIy_TvDyTrt-m6aLTz2zAhWrxSucQmjUEcvrtFWSHtr6oXTt9mQaAw3xTe_f2K4F2JfdVnEkvQFcjhIYM5AdlLNLyJGOl7xl-V2WUfDiEUfeRDQPSy5ZnHRQERU5Cfl1LyZUb0iYO9dKs3xct9TAnhMXdJhfBKXZ-WunGJsSVhRuKUTGSMNS66aP5U84Jq00J3NiRWbBvTzpoCRUCT9XonRj8ARewGIUBZB8BDcJ1bjfm2Dxprd0_8HxwVnxAbbZqStvvgMR9Wft1DuUxbwlun_UDJ_jGRZkpv1zOmi-MsqsS56HvKsj-DS00aw8gOWnHhQpzd_DezKTCjPwYKLpJfXzT3HwY-Wu2wTGVI5ZXzS_pdC7emKbOInaUnYai6wpt_PT
dc.subjectNon-linear differential equationspt_PT
dc.subjectNumerical modellingpt_PT
dc.subjectNumerical solutionspt_PT
dc.subjectTsunamispt_PT
dc.subjectJapanpt_PT
dc.titleComparison between MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-Oki, 2011 examplept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage983pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage958pt_PT
oaire.citation.titleGeophysical Journal Internationalpt_PT
oaire.citation.volume216pt_PT
person.familyNamede Carvalho Viana Baptista
person.familyNameMIRANDA
person.givenNameMARIA ANA
person.givenNameJORGE MIGUEL
person.identifierhttps://scholar.google.pt/citations?user=ApQ9Bp4AAAAJ&hl=pt-PT
person.identifier1644327
person.identifier.ciencia-idCF12-1EE3-F49B
person.identifier.ciencia-idED1A-8CC7-06DB
person.identifier.orcid0000-0002-6381-703X
person.identifier.orcid0000-0002-1321-8709
person.identifier.ridB-5287-2008
person.identifier.scopus-author-idhttps://www.scopus.com/authid/detail.uri?authorId=7102934075
person.identifier.scopus-author-id7202982159
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa01dd185-70d9-4a8e-9c8c-1418e555ef00
relation.isAuthorOfPublication6949869a-9af7-4284-ac56-85747a2dfa45
relation.isAuthorOfPublication.latestForDiscovery6949869a-9af7-4284-ac56-85747a2dfa45

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Comparison_MABaptista.pdf
Size:
6.24 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: