Repository logo
 
Publication

Incremental filter and wrapper approaches for feature discretization

dc.contributor.authorJ. Ferreira, Artur
dc.contributor.authorFigueiredo, Mário Alexandre Teles de
dc.date.accessioned2015-08-18T13:50:00Z
dc.date.available2015-08-18T13:50:00Z
dc.date.issued2014-01
dc.description.abstractDiscrete data representations are necessary, or at least convenient, in many machine learning problems. While feature selection (FS) techniques aim at finding relevant subsets of features, the goal of feature discretization (FD) is to find concise (quantized) data representations, adequate for the learning task at hand. In this paper, we propose two incremental methods for FD. The first method belongs to the filter family, in which the quality of the discretization is assessed by a (supervised or unsupervised) relevance criterion. The second method is a wrapper, where discretized features are assessed using a classifier. Both methods can be coupled with any static (unsupervised or supervised) discretization procedure and can be used to perform FS as pre-processing or post-processing stages. The proposed methods attain efficient representations suitable for binary and multi-class problems with different types of data, being competitive with existing methods. Moreover, using well-known FS methods with the features discretized by our techniques leads to better accuracy than with the features discretized by other methods or with the original features. (C) 2013 Elsevier B.V. All rights reserved.por
dc.identifier.citationFERREIRA, Artur Jorge; FIGUEIREDO, Mário Alexandre Teles de – Incremental filter and wrapper approaches for features discretization. In Neurocomputing. Amsterdam : Elsevier Science BV, 2014. ISSN: 0925-2312. Vol. 123, p. 60-74.
dc.identifier.doi10.1016/j.neucom.2012.10.036
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttp://hdl.handle.net/10400.21/4808
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevier Science BVpor
dc.relationSFRH/PROTEC/67605/2010
dc.relationPEst-OE/EEI/ LA0008/2011
dc.subjectFeature discretizationpor
dc.subjectStatic discretizationpor
dc.subjectIncremental discretizationpor
dc.subjectFilterpor
dc.subjectWrapperpor
dc.subjectFeature selectionpor
dc.titleIncremental filter and wrapper approaches for feature discretizationpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAmsterdampor
oaire.citation.endPage74por
oaire.citation.startPage60por
oaire.citation.titleNeurocomputingpor
oaire.citation.volume123por
person.familyNameFerreira
person.givenNameArtur
person.identifier1049438
person.identifier.ciencia-id091A-96FB-A88C
person.identifier.orcid0000-0002-6508-0932
person.identifier.ridAAL-4377-2020
person.identifier.scopus-author-id35315359300
rcaap.rightsclosedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication734bfe75-0c68-4cdf-8a87-2aef3564f5bd
relation.isAuthorOfPublication.latestForDiscovery734bfe75-0c68-4cdf-8a87-2aef3564f5bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Incremental filter.pdf
Size:
953.13 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: