Repository logo
 
Publication

An unsupervised approach to feature discretization and selection

dc.contributor.authorJ. Ferreira, Artur
dc.contributor.authorFigueiredo, Mário A. T.
dc.date.accessioned2015-09-07T11:17:36Z
dc.date.available2015-09-07T11:17:36Z
dc.date.issued2012-09
dc.description.abstractMany learning problems require handling high dimensional datasets with a relatively small number of instances. Learning algorithms are thus confronted with the curse of dimensionality, and need to address it in order to be effective. Examples of these types of data include the bag-of-words representation in text classification problems and gene expression data for tumor detection/classification. Usually, among the high number of features characterizing the instances, many may be irrelevant (or even detrimental) for the learning tasks. It is thus clear that there is a need for adequate techniques for feature representation, reduction, and selection, to improve both the classification accuracy and the memory requirements. In this paper, we propose combined unsupervised feature discretization and feature selection techniques, suitable for medium and high-dimensional datasets. The experimental results on several standard datasets, with both sparse and dense features, show the efficiency of the proposed techniques as well as improvements over previous related techniques.por
dc.identifier.citationFERREIRA, Artur J.; FIGUEIREDO, Mário A. T. – An unsupervised approach to feature discretization and selection. Pattern Recognition. ISSN: 0031-3203. Vol 45, nr. 9 (2012), pp. 3048-3060por
dc.identifier.doi10.1016/j.patcog.2011.12.008
dc.identifier.issn0031-3203
dc.identifier.urihttp://hdl.handle.net/10400.21/5074
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.relationPolytechnic Institute of Lisbon - SFRH/PROTEC/67605/2010
dc.relationInstituto de Telecomunicacoes - Pest-OE/EEI/LA0008/2011
dc.subjectFeature discretizationpor
dc.subjectFeature quantizationpor
dc.subjectFeature selectionpor
dc.subjectLinde-Buzo-Gray algorithmpor
dc.subjectSparse datapor
dc.subjectSupport vector machinespor
dc.subjectNaive Bayespor
dc.subjectK-Nearest neighborpor
dc.titleAn unsupervised approach to feature discretization and selectionpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceOxon
oaire.citation.endPage3060por
oaire.citation.issue9por
oaire.citation.startPage3048por
oaire.citation.titlePattern Recognitionpor
oaire.citation.volume45por
person.familyNameFerreira
person.givenNameArtur
person.identifier1049438
person.identifier.ciencia-id091A-96FB-A88C
person.identifier.orcid0000-0002-6508-0932
person.identifier.ridAAL-4377-2020
person.identifier.scopus-author-id35315359300
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication734bfe75-0c68-4cdf-8a87-2aef3564f5bd
relation.isAuthorOfPublication.latestForDiscovery734bfe75-0c68-4cdf-8a87-2aef3564f5bd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
An unsupervised approach.pdf
Size:
477.01 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: