Repository logo
 
Publication

GC-Wise: a self-adaptive approach fo rmemory-performance efficiency in Java VMs

dc.contributor.authorSimão, José
dc.contributor.authorEsteves, S.
dc.contributor.authorPires, André
dc.contributor.authorVeiga, Luís
dc.date.accessioned2020-04-09T16:21:38Z
dc.date.available2020-04-09T16:21:38Z
dc.date.issued2019-11
dc.description.abstractHigh-level language runtimes are ubiquitous in every cloud deployment. From the geo-distributed heavy resources cloud provider to the new Fog and Edge deployment paradigms, all rely on these runtimes for portability, isolation and resource management. Across these clouds, an efficient resource management of several managed runtimes involves limiting the heap size of some VMs so that extra memory can be assigned to higher priority workloads. The challenges in this approach rely on the potential scale of systems and the need to make decisions in an application-driven way, because performance degradation can be severe, and therefore it should be minimized. Also, each tenant tends to repeat the execution of applications with similar memory-usage patterns, giving opportunity to reuse parameters known to work well for a given workload. This paper presents GC-Wise, a system to determine, at run-time, the best values for critical heap management parameters of the OpenJDK JVM, aiming to maximize memory-performance efficiency. GCWise comprises two main phases: 1) a training phase where it collects, with different heap resizing policies, representative execution metrics during the lifespan of a workload; and 2) an execution phase where an oracle matches the execution parameters of new workloads against those of already seen workloads, and enforces the best heap resizing policy. Distinctly from other works, the oracle can also decide upon unknown workloads. Using representative applications and different hardware setting (a resourceful server and a fog-like device), we show that our approach can lead to significant memory savings with low-impact on the throughput of applications. Furthermore, we show that we can predict with high accuracy the best heap resizing configuration in a relatively short period of time.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSIMÃO, José; [et al] – GC-Wise: a self-adaptive approach fo rmemory-performance efficiency in Java VMs. Future Generation Computer Systems. ISSN 0167-739X. Vol. 100 (2019), pp. 674-688pt_PT
dc.identifier.doihttps://doi.org/10.1016/j.future.2019.05.027pt_PT
dc.identifier.issn0167-739X
dc.identifier.urihttp://hdl.handle.net/10400.21/11447
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationPTDC/EEI-SCR/6945/2014 - FCTpt_PT
dc.relationPTDC/EEI-COM/30644/2017 - FCTpt_PT
dc.relationPOCI-01-0145-FEDER-016883 - ERDF through COMPETE 2020 Programmept_PT
dc.relationUID/CEC/50021/2019 - FCTpt_PT
dc.relation.publisherversionhttps://pdf.sciencedirectassets.com/271521/1-s2.0-S0167739X19X00072/1-s2.0-S0167739X18304898/main.pdf?X-Amz-Date=20200409T160129Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Signature=9ba3dbf1b8939c0689e9145eaea661b6f188b303352ca124bb1a9c1489a9c5df&X-Amz-Credential=ASIAQ3PHCVTYYACNOWVA%2F20200409%2Fus-east-1%2Fs3%2Faws4_request&type=client&tid=prr-fbbdfb51-4f9d-42cf-871b-a53495899b87&sid=bb3f48a29484e1480c6af9c63ca217fe5228gxrqb&pii=S0167739X18304898&X-Amz-SignedHeaders=host&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOj%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIDmpQassxhO2VjsNIX6TDgPiOWOHE8oj7Dvi2LrPehSQAiEA4HSf9XyeDKszR29HwZ6n5Va5meicwOciwz6jq432qJkqvQMI8P%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARADGgwwNTkwMDM1NDY4NjUiDDzZqPcMuI3%2BejVuPyqRAwhUICnkBwk5ZVAFqHNt1gHCl4V%2B7ynAUx82wefClSP9fpPNFePn2JUkt%2Fax%2B4Ftk1j2LnHWBCeQcQNbp8Rat%2BHWMbgINdUHMyQpqx%2BA2HLGVfT5w9aLUV70LyQ6vvcO2LK1HTMr6MizcH30aJanc4WIBbdGIVrM1FsBMxZisRh5GCXU56aq6P4XNM0%2F%2Fa5KKlzFk4JzgM4HPSkLiA01MdSgIgk0ZUStx%2B10M5pmb9CvSLR2ZPmDq6Ns5y0NlvCUKD%2FiQx4QJoZrhhlwHyTg79pKcwjX7tFj7%2Bga%2FfqltB%2FDmFR8bmiX32OeFpkmZQPEX8IH%2FLNL3Exhru%2FaozbakldBVwFuUp3YPR8AoyU7Q%2FnRyUqLM2vrpHiKhbRs3k6FoU2PdXjQv0oQe6Gw0WxaqOSAAKABP0PtiTrjX%2F3S2uX4JcsxViaOxnEbFL2wZsnS0cRZjo4rB1DoDj9i35v7fojgr2MUyIDy3HNviI1aCphJb9JuvhoKEcodFacKn45%2FMMZ82jhHH8siL%2FDwUg8KDYJGMJH1vPQFOusB12RgQUKDOqbj6p%2BIrux8M4LsNfgNxqdS1dCsPB4DATCENWK22glNLrJGtQzr7SvzjYH3c8o1liUjPoABH%2Fojuro6CiWL7rxqZ%2FGGlKAprry4evBcFVbOWlEcDU2fc4bGuwMSdP%2Fe%2F1morGAo6PX%2FA67fodKTuJKbgvaKTdOc9UyZhxU%2BOfMz4Q8E2MlTMFTyuUXedECfjX9tARCdtjE8Ut1RCw%2BqHzt1YYbh2qmiL2W4X%2BVcHHtVeBch3qppIQXmTVH5Ugx7u5mKvpa%2FxGuQc75%2F2%2BFhPhwa2KPu2NVNzqruqsQHUabFK556KQ%3D%3D&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&X-Amz-Expires=300&hash=f9dc1eb4f34b09d188bc02769a8fb7b7fdc096733ca1ae37eafa907ccbe132f0pt_PT
dc.subjectMemory managementpt_PT
dc.subjectMachine learningpt_PT
dc.subjectJava virtual machinept_PT
dc.titleGC-Wise: a self-adaptive approach fo rmemory-performance efficiency in Java VMspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage688pt_PT
oaire.citation.startPage674pt_PT
oaire.citation.titleFuture Generation Computer Systemspt_PT
oaire.citation.volume100pt_PT
person.familyNameSimão
person.familyNamePires
person.familyNameVeiga
person.givenNameJosé
person.givenNameAndré
person.givenNameLuís
person.identifier1099536
person.identifier.ciencia-id5413-C0FA-7557
person.identifier.ciencia-idF119-0817-F58E
person.identifier.orcid0000-0002-6564-593X
person.identifier.orcid0000-0002-8101-7837
person.identifier.orcid0000-0002-9285-0736
person.identifier.ridL-4615-2013
person.identifier.scopus-author-id57189313027
person.identifier.scopus-author-id6701821307
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication625152de-db55-4942-8506-f461f4bd947d
relation.isAuthorOfPublication1333573f-589d-4a22-9cde-4d4f3f133cf8
relation.isAuthorOfPublicationb620f1c1-7e39-40a2-917e-57834bc73e89
relation.isAuthorOfPublication.latestForDiscovery625152de-db55-4942-8506-f461f4bd947d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
GC-Wise_JSimao.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: