Repository logo
 
Publication

Blind hyperspectral unmixing

dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José M.
dc.date.accessioned2016-05-03T13:27:28Z
dc.date.available2016-05-03T13:27:28Z
dc.date.issued2007-05
dc.description.abstractThis paper introduces a new hyperspectral unmixing method called Dependent Component Analysis (DECA). This method decomposes a hyperspectral image into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA performance is illustrated using simulated and real data.pt_PT
dc.identifier.citationNASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Blind hyperspectral unmixing. Sixth Conference on Telecommunications. Vol. I. 617-624, 2007pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.21/6147
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationPOSC/EEACPS/ 61271/2004pt_PT
dc.relationOil Slick Surveillance Using ASAR and MERIS Data
dc.subjectBlind hyperspectral unmixingpt_PT
dc.titleBlind hyperspectral unmixingpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleOil Slick Surveillance Using ASAR and MERIS Data
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/PDCTE/PDCTE%2FCPS%2F49967%2F2003/PT
oaire.citation.conferencePlacePeniche, Portugalpt_PT
oaire.citation.endPage624pt_PT
oaire.citation.startPage617pt_PT
oaire.citation.titleSixth Conference on Telecommunicationspt_PT
oaire.citation.volumeIpt_PT
oaire.fundingStreamPDCTE
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isProjectOfPublication15c20117-8da0-4de1-9b37-eb381aeb5c54
relation.isProjectOfPublication.latestForDiscovery15c20117-8da0-4de1-9b37-eb381aeb5c54

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Blind Hyperspectral Unmixing.pdf
Size:
934.67 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: