Repository logo
 
Publication

Large-scale LoRa networks: a mode adaptive protocol

dc.contributor.authorLuís, Miguel
dc.contributor.authorSargento, Susana
dc.contributor.authorFernandes, Rui
dc.date.accessioned2021-09-20T10:25:05Z
dc.date.available2021-09-20T10:25:05Z
dc.date.issued2021-09-01
dc.description.abstractLow-power wide-area networks (LPWANs) are probably the most promising radio access technologies for Internet-of-Things (IoT) applications. Amongst these, one of the most auspicious solutions is LoRa, a versatile technology highly compatible with urban environments, enabling long-range communications. Most of the LoRa-based medium access protocols operate under the ALOHA rationale, whose performance is known to be fairly poor. This work targets the medium access in single-channel large-scale LoRa networks, proposing a new protocol, denoted as the LoRa mode adaptive protocol (LoRa-MAP), which manages to maintain the best possible connection between end nodes and the gateway, by adapting the LoRa's physical layer parameters and making use of control packets for its coordination without violating the duty-cycle constraints of both end nodes and gateway. An analysis on different medium access schemes is conducted, aiming to perceive how different parameters and network layouts influence the coordination process. An energy expenditure analysis is conducted comparing LoRa-MAP to simpler solutions to study the impact of additional transmission/listening periods. The simulation results have shown that the proposed solution increases the LoRa network scalability, deeming it a great candidate for IoT environments.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationFERNANDES, Rui; SARGENTO, Susana – Large-scale LoRa networks: a mode adaptive protocol. IEEE Internet of Things Journal. ISSN 2327-4662. Vol. 8, N.º 17 (2021), pp. 13487-13502pt_PT
dc.identifier.doi10.1109/JIOT.2021.3064932pt_PT
dc.identifier.issn2327-4662
dc.identifier.urihttp://hdl.handle.net/10400.21/13748
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relationInstituto de Telecomunicações
dc.relationInstituto de Telecomunicações
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9373580pt_PT
dc.subjectInternet of Things (IoT)pt_PT
dc.subjectLoRapt_PT
dc.subjectMedium accesspt_PT
dc.subjectPerformance analysispt_PT
dc.subjectScalabilitypt_PT
dc.titleLarge-scale LoRa networks: a mode adaptive protocolpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50008%2F2020/PT
oaire.citation.endPage13502pt_PT
oaire.citation.issue17pt_PT
oaire.citation.startPage13487pt_PT
oaire.citation.titleIEEE Internet of Things Journalpt_PT
oaire.citation.volume8pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLuís
person.familyNameSargento
person.givenNameMiguel
person.givenNameSusana
person.identifier.ciencia-id3418-A2F5-3CA4
person.identifier.ciencia-id6C11-2B5E-FACB
person.identifier.orcid0000-0003-3488-2462
person.identifier.orcid0000-0001-8761-8281
person.identifier.scopus-author-id36164286400
person.identifier.scopus-author-id6603312796
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2eadcc1c-ff03-403a-9c42-f2e45f0fd528
relation.isAuthorOfPublicatione0814076-e21c-4aab-beeb-0a06d3b01e24
relation.isAuthorOfPublication.latestForDiscovery2eadcc1c-ff03-403a-9c42-f2e45f0fd528
relation.isProjectOfPublication75f6c6d9-5365-4d88-a66f-00492a6ffb5a
relation.isProjectOfPublication222d67a9-2dd1-431a-a5ce-721b5172c8c7
relation.isProjectOfPublication.latestForDiscovery222d67a9-2dd1-431a-a5ce-721b5172c8c7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Large-Scale_MLuis.pdf
Size:
6.22 MB
Format:
Adobe Portable Document Format