Repository logo
 
Publication

Efficient design of pruned convolutional neural networks on FPGA

dc.contributor.authorVéstias, Mário
dc.date.accessioned2020-11-20T13:07:05Z
dc.date.available2020-11-20T13:07:05Z
dc.date.issued2020-11-14
dc.descriptionEste trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2020 do Instituto Politécnico de Lisboa. Código de referência IPL/2020/TRAINEE/ISEL
dc.description.abstractConvolutional Neural Networks (CNNs) have improved several computer vision applications, like object detection and classification, when compared to other machine learning algorithms. Running these models in edge computing devices close to data sources is attracting the attention of the community since it avoids high-latency data communication of private data for cloud processing and permits real-time decisions turning these systems into smart embedded devices. Running these models is computationally very demanding and requires a large amount of memory, which are scarce in edge devices compared to a cloud center. In this paper, we proposed an architecture for the inference of pruned convolutional neural networks in any density FPGAs. A configurable block pruning method is proposed together with an architecture that supports the efficient execution of pruned networks. Also, pruning and batching are studied together to determine how they influence each other. With the proposed architecture, we run the inference of a CNN with an average performance of 322 GOPs for 8-bit data in a XC7Z020 FPGA. The proposed architecture running AlexNet processes 240 images/s in a ZYNQ7020 and 775 images/s in a ZYNQ7045 with only 1.2% accuracy degradation.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationVÉSTIAS, Mário – Efficient design of pruned convolutional neural networks on FPGA. Journal of Signal Processing Systems for Signal Image and Video Technology. ISSN 1939-8115. Vol. 93, N.º 5 (SI), (2020), pp. 531-544pt_PT
dc.identifier.issn1939-8115
dc.identifier.issn1939-8018
dc.identifier.urihttp://hdl.handle.net/10400.21/12388
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationUIDB/50021/2020 - FCTpt_PT
dc.relationProjeto financiado no âmbito do Concurso de Projetos de Investigação, Desenvolvimento, Inovação & Criação Artística (IDI&CA) financiados pelo Instituto Politécnico de Lisboa. IPL/2020/TRAINEE/ISELpt_PT
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11265-020-01606-2
dc.subjectDeep learningpt_PT
dc.subjectConvolutional neural networkpt_PT
dc.subjectFPGApt_PT
dc.subjectBlock pruningpt_PT
dc.subjectEdge computingpt_PT
dc.titleEfficient design of pruned convolutional neural networks on FPGApt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage544pt_PT
oaire.citation.issue5
oaire.citation.startPage531pt_PT
oaire.citation.titleJournal of Signal Processing Systems for Signal Image and Video Technologypt_PT
oaire.citation.volume93
person.familyNameVéstias
person.givenNameMário
person.identifier.ciencia-id4717-C2C7-3F2C
person.identifier.orcid0000-0001-8556-4507
person.identifier.ridH-9953-2012
person.identifier.scopus-author-id14525867300
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa7d22b29-c961-45ac-bc09-cd5e1002f1e8
relation.isAuthorOfPublication.latestForDiscoverya7d22b29-c961-45ac-bc09-cd5e1002f1e8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Efficient_MVestias.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format