Repository logo
 
Publication

Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data?

dc.contributor.authorNascimento, Jose
dc.contributor.authorBioucas-Dias, José M.
dc.date.accessioned2014-06-05T11:21:49Z
dc.date.available2014-06-05T11:21:49Z
dc.date.issued2003-06
dc.descriptionChapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedingspor
dc.description.abstractIndependent Component Analysis (ICA) have recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: i) The observed data vector is a linear mixture of the sources (abundance fractions); ii) sources are independent. Concerning hyperspectral data, the first assumption is valid whenever the constituent substances are surface distributed. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be independent. This paper gives evidence that ICA, at least in its canonical form, is not suited to unmix hyperspectral data. We arrive to this conclusion by minimizing the mutual information of simulated hyperspectral mixtures. The hyperspectral data model includes signature variability, abundance perturbation, sensor Point Spread Function (PSF), abundance constraint and electronic noise. Mutual information computation is based on fitting mixtures of Gaussians to the observed data.por
dc.identifier.citationNASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data? Pattern Recognition and Image Analysis. Vol. 2652 (2003), p. 616-625.por
dc.identifier.isbn978-3-540-40217-6
dc.identifier.isbn978-3-540-44871-6
dc.identifier.other10.1007/978-3-540-44871-6_72
dc.identifier.urihttp://hdl.handle.net/10400.21/3613
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.relation.ispartofseriesLecture Notes in Computer Science;
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-540-44871-6_72por
dc.subjectUnmixing Hyperspectral Datapor
dc.subjectIndependent Component Analysispor
dc.titleDoes Independent Component Analysis Play a Role in Unmixing Hyperspectral Data?por
dc.typebook part
dspace.entity.typePublication
oaire.citation.conferencePlacePuerto de Andratxpor
oaire.citation.endPage625por
oaire.citation.startPage616por
oaire.citation.titlePattern Recognition and Image Analysispor
oaire.citation.volume2652por
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
rcaap.rightsrestrictedAccesspor
rcaap.typebookPartpor
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data.rep.pdf
Size:
185.71 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: