Repository logo
 
Publication

Fuzzy clustering applied to a demand response model in a smart grid contingency scenario

dc.contributor.authorPereira, Rita
dc.contributor.authorMelício, Rui
dc.contributor.authorMendes, Victor
dc.contributor.authorFigueiredo, J.
dc.contributor.authorMartins, J.
dc.contributor.authorFagundes, A.
dc.contributor.authorQuadrado, Jose Carlos
dc.date.accessioned2015-05-07T11:55:33Z
dc.date.available2015-05-07T11:55:33Z
dc.date.issued2014
dc.description.abstractThis paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.por
dc.identifier.citationPEREIRA, Rita Marcos Fontes Murta; [et. al] - Fuzzy clustering applied to a demand response model in a smart grid contingency scenario. International Sympodium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). ISBN 978-1-4799-4749-2. (2014), pp. 495-498por
dc.identifier.doi10.1109/SPEEDAM.2014.6872122
dc.identifier.isbn978-1-4799-4749-2
dc.identifier.urihttp://hdl.handle.net/10400.21/4497
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEE - Institute of Electrical and Electronics Engineers Inc.por
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6872122&tag=1por
dc.subjectDemand responsepor
dc.subjectFuzzy clusteringpor
dc.subjectSmart gridpor
dc.subjectContingencypor
dc.titleFuzzy clustering applied to a demand response model in a smart grid contingency scenariopor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceItalypor
oaire.citation.endPage499por
oaire.citation.startPage495por
oaire.citation.titleInternational Sympodium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)por
person.familyNamePereira
person.familyNameMendes
person.familyNameQuadrado
person.givenNameRita
person.givenNameVictor
person.givenNameJose Carlos
person.identifier1017389
person.identifier.ciencia-idD414-8A98-C167
person.identifier.ciencia-id891C-4BD1-5CA4
person.identifier.orcid0000-0002-7739-8737
person.identifier.orcid0000-0002-4599-477X
person.identifier.orcid0000-0002-5560-347X
person.identifier.ridD-2332-2012
person.identifier.ridI-4080-2013
person.identifier.scopus-author-id57191694372
person.identifier.scopus-author-id55138675600
person.identifier.scopus-author-id55971668200
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication0152ce58-7727-49a3-9502-79f01aca4f48
relation.isAuthorOfPublicationa86b9291-f23c-4f09-83d7-9ee691696705
relation.isAuthorOfPublicationfb1b74bf-c21f-4674-b6ed-31de57010b28
relation.isAuthorOfPublication.latestForDiscoveryfb1b74bf-c21f-4674-b6ed-31de57010b28

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fuzzy Clustering_ADEEEA.pdf
Size:
390.43 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: