Repository logo
 
Publication

Hierarchical classification and system combination for automatically identifying physiological and neuromuscular laryngeal pathologies

dc.contributor.authorCordeiro, Hugo
dc.contributor.authorFonseca, Jose
dc.contributor.authorGuimarães, Isabel
dc.contributor.authorMeneses, Carlos
dc.date.accessioned2019-03-25T10:54:59Z
dc.date.available2019-03-25T10:54:59Z
dc.date.issued2017-05
dc.description.abstractObjectives. Speech signal processing techniques have provided several contributions to pathologic voice identification, in which healthy and unhealthy voice samples are evaluated. A less common approach is to identify laryngeal pathologies, for which the use of a noninvasive method for pathologic voice identification is an important step forward for preliminary diagnosis. In this study, a hierarchical classifier and a combination of systems are used to improve the accuracy of a three-class identification system (healthy, physiological larynx pathologies, and neuromuscular larynx pathologies). Method. Three main subject classes were considered: subjects with physiological larynx pathologies (vocal fold nodules and edemas: 59 samples), subjects with neuromuscular larynx pathologies (unilateral vocal fold paralysis: 59 samples), and healthy subjects (36 samples). The variables used in this study were a speech task (sustained vowel /a/ or continuous reading speech), features with or without perceptual information, and features with or without direct information about formants evaluated using single classifiers. A hierarchical classification system was designed based on this information. Results. The resulting system combines an analysis of continuous speech by way of the commonly used sustained vowel /a/ to obtain spectral and perceptual speech features. It achieved an accuracy of 84.4%, which represents an improvement of approximately 9% compared with the stand-alone approach. For pathologic voice identification, the accuracy obtained was 98.7%, and the identification accuracy for the two pathology classes was 81.3%. Conclusions. Hierarchical classification and system combination create significant benefits and introduce a modular approach to the classification of larynx pathologies.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCORDEIRO, Hugo; [et al] – Hierarchical classification and system combination for automatically identifying physiological and neuromuscular laryngeal pathologies. Journal of Voice. ISSN 0892-1997. Vol. 31, N.º 3 (2017), pp. 1-6pt_PT
dc.identifier.doi10.1016/j.jvoice.2016.09.003pt_PT
dc.identifier.issn0892-1997
dc.identifier.issn1873-4588
dc.identifier.urihttp://hdl.handle.net/10400.21/9772
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://reader.elsevier.com/reader/sd/pii/S089219971630265X?token=D0ADB46DFC970A425DB28CB833F5DC3F3EB7F7B8ED6B09838B66BBC58ECD20D0D5CFA83ED470EF0A6F742F338BD7B75Apt_PT
dc.subjectHierarchical classificationpt_PT
dc.subjectPathologic voice identificationpt_PT
dc.subjectLarynx pathology identificationpt_PT
dc.subjectContinuous speechpt_PT
dc.subjectSustained vowelpt_PT
dc.subjectClassificação hierárquicapt_PT
dc.subjectIdentificação de voz patológicapt_PT
dc.subjectFala contínuapt_PT
dc.titleHierarchical classification and system combination for automatically identifying physiological and neuromuscular laryngeal pathologiespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage6pt_PT
oaire.citation.issue3pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleJournal of Voicept_PT
oaire.citation.volume31pt_PT
person.familyNameCordeiro
person.familyNameFonseca
person.familyNameGuimarães
person.familyNameMeneses
person.givenNameHugo
person.givenNameJose
person.givenNameIsabel
person.givenNameCarlos
person.identifier0000000068495282
person.identifier548796
person.identifier.ciencia-idA81E-0891-9E9C
person.identifier.ciencia-id0F11-7C86-8998
person.identifier.ciencia-idF014-BFD6-49C2
person.identifier.ciencia-id531B-D2F8-2544
person.identifier.orcid0000-0001-5559-7746
person.identifier.orcid0000-0001-7173-7374
person.identifier.orcid0000-0001-8524-8731
person.identifier.orcid0000-0002-7770-7093
person.identifier.ridQ-4604-2019
person.identifier.ridC-9497-2013
person.identifier.scopus-author-id15833754300
person.identifier.scopus-author-id34769664200
person.identifier.scopus-author-id24586862700
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationd89b5aa9-55f3-4087-80d4-ab6a005906d6
relation.isAuthorOfPublication23528527-fe41-4586-84e6-b47523cf4724
relation.isAuthorOfPublication01022df5-418d-4c3b-a61a-2352021b43dd
relation.isAuthorOfPublication97333978-1ce6-4d9a-9639-dc014f9e4ff3
relation.isAuthorOfPublication.latestForDiscovery01022df5-418d-4c3b-a61a-2352021b43dd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hierarchical_HCordeiro.pdf
Size:
196.34 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: