Logo do repositório
 
Publicação

Error estimates and generalized trial constructions for solving ODEs using physics-informed neural networks

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorBabni, Atmane
dc.contributor.authorJamiai, Ismail
dc.contributor.authorRodrigues, José Alberto
dc.date.accessioned2026-01-08T10:32:09Z
dc.date.available2026-01-08T10:32:09Z
dc.date.issued2025-11-24
dc.description.abstractIn this paper, we address the challenge of solving differential equations using physics-informed neural networks (PINNs), an innovative approach that integrates known physical laws into neural network training. The PINN approach involves three main steps: constructing a neural-network-based solution ansatz, defining a suitable loss function, and minimizing this loss via gradient-based optimization. We review two primary PINN formulations: the standard PINN I and an enhanced PINN II. The latter explicitly incorporates initial, final, or boundary conditions. Focusing on first-order differential equations, PINN II methods typically express the approximate solution as u˜(x,θ)=P(x)+Q(x)N(x,θ), where N(x,θ) is the neural network output with parameters θ, and P(x) and Q(x) are polynomial functions. We generalize this formulation by replacing the polynomial Q(x) with a more flexible function ϕ(x). We demonstrate that this generalized form yields a uniform approximation of the true solution, based on Cybenko’s universal approximation theorem. We further show that the approximation error diminishes as the loss function converges. Numerical experiments validate our theoretical findings and illustrate the advantages of the proposed choice of ϕ(x). Finally, we outline how this framework can be extended to higher-order or other classes of differential equations.eng
dc.identifier.citationBabni, A., Jamiai, I., & Rodrigues, J. A. (2025). Error estimates and generalized trial constructions for solving ODEs using physics-informed neural networks. Mathematical and Computational Applications, 30(6), 127. https://doi.org/10.3390/mca30060127
dc.identifier.doi10.3390/mca30060127
dc.identifier.eissn2297-8747
dc.identifier.urihttp://hdl.handle.net/10400.21/22454
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI AG
dc.relation.hasversionhttps://www.mdpi.com/2297-8747/30/6/127
dc.relation.ispartofMathematical and Computational Applications
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPhysics-informed neural networks (PINNs)
dc.subjectDifferential equations
dc.subjectUniversal approximation theorem
dc.subjectLoss function
dc.subjectError estimates
dc.titleError estimates and generalized trial constructions for solving ODEs using physics-informed neural networkseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage26
oaire.citation.issue6
oaire.citation.startPage1
oaire.citation.titleMathematical and Computational Applications
oaire.citation.volume30
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameRodrigues
person.givenNameJosé Alberto
person.identifier.ciencia-id241B-90A4-D998
person.identifier.orcid0000-0001-5630-7149
person.identifier.scopus-author-id7202707426
relation.isAuthorOfPublication6743a818-d8d5-489f-829e-43391b3257cc
relation.isAuthorOfPublication.latestForDiscovery6743a818-d8d5-489f-829e-43391b3257cc

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Error_JARodrgues_DM.pdf
Tamanho:
1.78 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: