Repository logo
 
Publication

A no-reference video streaming QoE estimator based on physical layer 4G radio measurements

dc.contributor.authorMoura, D.
dc.contributor.authorSousa, M.
dc.contributor.authorVieira, Pedro
dc.contributor.authorRodrigues, A.
dc.contributor.authorQueluz, M. P.
dc.date.accessioned2020-06-29T12:05:50Z
dc.date.available2020-06-29T12:05:50Z
dc.date.issued2020-06-19
dc.description.abstractWith the increase in consumption of multimedia content through mobile devices (e.g., smartphones), it is crucial to find new ways of optimizing current and future wireless networks and to continuously give users a better Quality of Experience (QoE) when accessing that content. To achieve this goal, it is necessary to provide Mobile Network Operator (MNO) with real time QoE monitoring for multimedia services (e.g., video streaming, web browsing), enabling a fast network optimization and an effective resource management. This paper proposes a new QoE prediction model for video streaming services over 4G networks, using layer 1 (i.e., Physical Layer) key performance indicators (KPIs). The model estimates the service Mean Opinion Score (MOS) based on a Machine Learning (ML) algorithm, and using real MNO drive test (DT) data, where both application layer and layer 1 metrics are available. From the several considered ML algorithms, the Gradient Tree Boosting (GTB) showed the best performance, achieving a Pearson correlation of 78.9%, a Spearman correlation of 66.8% and a Mean Squared Error (MSE) of 0.114, on a test set with 901 examples. Finally, the proposed model was tested with new DT data together with the network’s configuration. With the use case results, QoE predictions were analyzed according to the context in which the session was established, the radio transmission environment and radio channel quality indicators.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMOURA, D.; [et al] – A no-reference video streaming QoE estimator based on physical layer 4G radio measurements. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). Seoul, Korea (South): IEEE, 2020. ISBN 978-1-7281-3106-1. Pp. 1-6pt_PT
dc.identifier.doi10.1109/WCNC45663.2020.9120504pt_PT
dc.identifier.isbn978-1-7281-3106-1
dc.identifier.isbn978-1-7281-3107-8
dc.identifier.issn1558-2612
dc.identifier.issn1525-3511
dc.identifier.urihttp://hdl.handle.net/10400.21/11962
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9120504pt_PT
dc.subjectMobile Wireless Networkspt_PT
dc.subjectLTEpt_PT
dc.subjectVideo Streamingpt_PT
dc.subjectQuality of Experiencept_PT
dc.titleA no-reference video streaming QoE estimator based on physical layer 4G radio measurementspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.citation.conferencePlace25-28 May 2020 - Seoul, Korea (South)pt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2020 IEEE Wireless Communications and Networking Conference (WCNC)pt_PT
oaire.fundingStream5876
person.familyNameVieira
person.givenNamePedro
person.identifier.ciencia-id071B-9A70-15B8
person.identifier.orcid0000-0003-0279-8741
person.identifier.scopus-author-id7004567421
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication51ae3527-d4ea-46f4-b6c9-62c7b77ac728
relation.isAuthorOfPublication.latestForDiscovery51ae3527-d4ea-46f4-b6c9-62c7b77ac728
relation.isProjectOfPublicatione2d2f1f5-1327-45b3-954c-2fdc843270e7
relation.isProjectOfPublication.latestForDiscoverye2d2f1f5-1327-45b3-954c-2fdc843270e7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A no-reference_PVieira.pdf
Size:
283.59 KB
Format:
Adobe Portable Document Format