Repository logo
 
Publication

Smart embedded system for skin cancer classification

dc.contributor.authorDurães, Pedro F. F.
dc.contributor.authorVéstias, Mário
dc.date.accessioned2023-05-05T07:13:34Z
dc.date.available2023-05-05T07:13:34Z
dc.date.issued2023-01-29
dc.description.abstractThe very good results achieved with recent algorithms for image classification based on deep learning have enabled new applications in many domains. The medical field is one that can greatly benefit from these algorithms in order to help the medical professional elaborate on his/her diagnostic. In particular, portable devices for medical image classification are useful in scenarios where a full analysis system is not an option or is difficult to obtain. Algorithms based on deep learning models are computationally demanding; therefore, it is difficult to run them in low-cost devices with a low energy consumption and high efficiency. In this paper, a low-cost system is proposed to classify skin cancer images. Two approaches were followed to achieve a fast and accurate system. At the algorithmic level, a cascade inference technique was considered, where two models were used for inference. At the architectural level, the deep learning processing unit from Vitis-AI was considered in order to design very efficient accelerators in FPGA. The dual model was trained and implemented for skin cancer detection in a ZYNQ UltraScale+ MPSoC ZCU104 evaluation kit with a ZU7EV device. The core was integrated in a full system-on-chip solution and tested with the HAM10000 dataset. It achieves a performance of 13.5 FPS with an accuracy of 87%, with only 33k LUTs, 80 DSPs, 70 BRAMs and 1 URAM.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationDURÃES, Pedro F. F.; VÉSTIAS, Mário P. – Smart embedded system for skin cancer classification. Future Internet. eISSN 1999-5903. Vol. 15, N.º 2 (2023), pp. 1-17.pt_PT
dc.identifier.doi10.3390/fi15020052pt_PT
dc.identifier.eissn1999-5903
dc.identifier.urihttp://hdl.handle.net/10400.21/15979
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationIPL/2022/eS2ST_ISEL - Instituto Politécnico de Lisboapt_PT
dc.relationInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
dc.relation.publisherversionhttps://www.mdpi.com/1999-5903/15/2/52pt_PT
dc.subjectDeep learningpt_PT
dc.subjectSmart healthpt_PT
dc.subjectCascade inferencept_PT
dc.subjectFPGApt_PT
dc.titleSmart embedded system for skin cancer classificationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50021%2F2020/PT
oaire.citation.endPage17pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleFuture Internetpt_PT
oaire.citation.volume15pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVéstias
person.givenNameMário
person.identifier.ciencia-id4717-C2C7-3F2C
person.identifier.orcid0000-0001-8556-4507
person.identifier.ridH-9953-2012
person.identifier.scopus-author-id14525867300
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationa7d22b29-c961-45ac-bc09-cd5e1002f1e8
relation.isAuthorOfPublication.latestForDiscoverya7d22b29-c961-45ac-bc09-cd5e1002f1e8
relation.isProjectOfPublication1f3e7ad3-87bb-4203-919b-53592c18fcea
relation.isProjectOfPublication.latestForDiscovery1f3e7ad3-87bb-4203-919b-53592c18fcea

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Smart_MPVestias.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: