Repository logo
 
Publication

Novelty detection algorithms to help identify abnormal activities in the daily lives of elderly people

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorFernandes, Anita Maria da Rocha
dc.contributor.authorLeithardt, Valderi Reis Quietinho
dc.contributor.authorSantana, Juan F. de Paz
dc.date.accessioned2025-10-14T09:23:27Z
dc.date.available2025-10-14T09:23:27Z
dc.date.issued2024-03
dc.description.abstractThe populations life expectancy is increasing, and this scenario will bring challenges to be faced in the coming decades to provide healthy and inclusive aging. At this stage of life, several common health conditions, chronic illnesses, and disabilities affect the individuals physical and mental health and prevent him from carrying out Activities of Daily Living. In this context, this article presents a comparative study between some Machine Learning algorithms used to identify behavioral abnormalities based on ADL (Activities of Daily Living), through the Novelty Detection technique. ADL data were used to create a model that defines the baseline behavior of an elderly person, and new observations, to verify significant changes in behavior, are classified as outliers or abnormal. The Local Outlier Factor, One-class Support Vector Machine, Robust Covariance, and Isolation Forest algorithms were analyzed, and the Local Outlier Factor obtained the best result, reaching a precision and F1-Score of 96%.eng
dc.identifier.citationFernandes, A. M. R., Leithardt, V. R. Q., & Santana, J. F. P. (2024). Novelty detection algorithms to help identify abnormal activities in the daily lives of elderly people. IEEE Latin America Transactions, 22(3), 195-203. https://doi.org/10.1109/TLA.2024.10431423
dc.identifier.doihttps://doi.org/10.1109/TLA.2024.10431423
dc.identifier.issn1548-0992
dc.identifier.urihttp://hdl.handle.net/10400.21/22172
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE
dc.relation.hasversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10431423&utm_source=clarivate&getft_integrator=clarivate&tag=1
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOlder adults
dc.subjectAnomaly detection
dc.subjectData models
dc.subjectBehavioral sciences
dc.subjectClassification algorithms
dc.subjectMonitoring
dc.subjectDatabases
dc.subjectActivities of daily living
dc.subjectMachine learning algorithms
dc.subjectNovelty detection
dc.titleNovelty detection algorithms to help identify abnormal activities in the daily lives of elderly peopleeng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage203
oaire.citation.issue3
oaire.citation.startPage195
oaire.citation.titleIEEE Latin America Transactions
oaire.citation.volume22
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Novelty_VRQLeithardt.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: