Publication
A full featured configurable accelerator for object detection with YOLO
dc.contributor.author | Pestana, Daniel | |
dc.contributor.author | Miranda, Pedro R. | |
dc.contributor.author | Lopes, João D. | |
dc.contributor.author | Duarte, Rui | |
dc.contributor.author | Véstias, Mário | |
dc.contributor.author | Neto, Horácio C | |
dc.contributor.author | De Sousa, Jose | |
dc.date.accessioned | 2021-09-07T09:41:09Z | |
dc.date.available | 2021-09-07T09:41:09Z | |
dc.date.issued | 2021-05-19 | |
dc.description.abstract | Object detection and classification is an essential task of computer vision. A very efficient algorithm for detection and classification is YOLO (You Look Only Once). We consider hardware architectures to run YOLO in real-time on embedded platforms. Designing a new dedicated accelerator for each new version of YOLO is not feasible given the fast delivery of new versions. This work's primary goal is to design a configurable and scalable core for creating specific object detection and classification systems based on YOLO, targeting embedded platforms. The core accelerates the execution of all the algorithm steps, including pre-processing, model inference and post-processing. It considers a fixed-point format, linearised activation functions, batch-normalisation, folding, and a hardware structure that exploits most of the available parallelism in CNN processing. The proposed core is configured for real-time execution of YOLOv3-Tiny and YOLOv4-Tiny, integrated into a RISC-V-based system-on-chip architecture and prototyped in an UltraScale XCKU040 FPGA (Field Programmable Gate Array). The solution achieves a performance of 32 and 31 frames per second for YOLOv3-Tiny and YOLOv4-Tiny, respectively, with a 16-bit fixed-point format. Compared to previous proposals, it improves the frame rate at a higher performance efficiency. The performance, area efficiency and configurability of the proposed core enable the fast development of real-time YOLO-based object detectors on embedded systems. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | PESTANA, Daniel; [et al] – A full featured configurable accelerator for object detection with YOLO. IEEE Access. ISSN 2169-3536. Vol. 9 (2021), pp. 75864-75877 | pt_PT |
dc.identifier.doi | 10.1109/ACCESS.2021.3081818 | pt_PT |
dc.identifier.issn | 2169-3536 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/13689 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation.publisherversion | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9435338&tag=1 | pt_PT |
dc.subject | Object detection | pt_PT |
dc.subject | Convolutional neural network | pt_PT |
dc.subject | FPGA | pt_PT |
dc.subject | Lightweight YOLO | pt_PT |
dc.title | A full featured configurable accelerator for object detection with YOLO | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 75877 | pt_PT |
oaire.citation.startPage | 75864 | pt_PT |
oaire.citation.title | IEEE Access | pt_PT |
oaire.citation.volume | 9 | pt_PT |
person.familyName | Duarte | |
person.familyName | Véstias | |
person.familyName | Cláudio de Campos Neto | |
person.familyName | de Sousa | |
person.givenName | Rui | |
person.givenName | Mário | |
person.givenName | Horácio | |
person.givenName | Jose | |
person.identifier.ciencia-id | B91E-770F-19A3 | |
person.identifier.ciencia-id | 4717-C2C7-3F2C | |
person.identifier.ciencia-id | 9915-3BDF-5C35 | |
person.identifier.ciencia-id | BE18-E262-E0EC | |
person.identifier.orcid | 0000-0002-7060-4745 | |
person.identifier.orcid | 0000-0001-8556-4507 | |
person.identifier.orcid | 0000-0002-3621-8322 | |
person.identifier.orcid | 0000-0001-7525-7546 | |
person.identifier.rid | I-4402-2015 | |
person.identifier.rid | H-9953-2012 | |
person.identifier.rid | L-6859-2015 | |
person.identifier.scopus-author-id | 24823991600 | |
person.identifier.scopus-author-id | 14525867300 | |
person.identifier.scopus-author-id | 7102813024 | |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | f2b4b9e6-6c89-48c7-bc83-62d2e98a787b | |
relation.isAuthorOfPublication | a7d22b29-c961-45ac-bc09-cd5e1002f1e8 | |
relation.isAuthorOfPublication | 38334d5e-83e8-494c-a9e0-396299376d97 | |
relation.isAuthorOfPublication | d98a4d45-2d45-42ec-9f1d-14775723709b | |
relation.isAuthorOfPublication.latestForDiscovery | a7d22b29-c961-45ac-bc09-cd5e1002f1e8 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A full_MVestias.pdf
- Size:
- 1.27 MB
- Format:
- Adobe Portable Document Format