Name: | Description: | Size: | Format: | |
---|---|---|---|---|
370.5 KB | Adobe PDF |
Advisor(s)
Abstract(s)
For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.
Description
Keywords
Nonautonomous discrete dynamical systems Interval maps Zeta functions Spectral invariants Topological entropy
Citation
ALVES, João Ferreira; MÁLEK, Michal; SILVA, Luís - Spectral invariants of periodic nonautonomous discrete dynamical systems. Journal of Mathematical Analysis and Applications. ISSN. 0022-247X. Vol. 430, N.º 1 (2015), pp. 85-97.
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE