Repository logo
 
Publication

Weighting lower and upper ranks simultaneously through rank-order correlation coefficients

dc.contributor.authorAleixo, Sandra
dc.contributor.authorTeles, Julia
dc.date.accessioned2019-02-06T11:20:16Z
dc.date.available2019-02-06T11:20:16Z
dc.date.issued2018-07-04
dc.description.abstractTwo new weighted correlation coefficients, that allow to give more weight to the lower and upper ranks simultaneously, are proposed. These indexes were obtained computing the Pearson correlation coefficient with a modified Klotz and modified Mood scores. Under the null hypothesis of independence of the two sets of ranks, the asymptotic distribution of these new coefficients was derived. The exact and approximate quantiles were provided. To illustrate the value of these measures an example, that could mimic several biometrical concerns, is presented. A Monte Carlo simulation study was carried out to compare the performance of these new coefficients with other weighted coefficient, the van der Waerden correlation coefficient, and with two non-weighted indexes, the Spearman and Kendall correlation coefficients. The results show that, if the aim of the study is the detection of correlation or agreement between two sets of ranks, putting emphasis on both lower and upper ranks simultaneously, the use of van der Waerden, signed Klotz and signed Mood rank-order correlation coefficients should be privileged, since they have more power to detect this type of agreement, in particular when the concordance was focused on a lower proportion of extreme ranks. The preference for one of the coefficients should take into account the weight one wants to assign to the extreme ranks.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationALEIXO, Sandra M.; TELES, Júlia – Weighting lower and upper ranks simultaneously through rank-order correlation coefficients. In Computational Science and Its Applications – ICCSA 2018 – Lecture Notes in Computer Science. Melbourne, Australia: Springer, Cham, 2018. ISBN 978-3-319-95164-5. Vol. 10961, Part II, pp. 318-334pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-319-95165-2_23pt_PT
dc.identifier.isbn978-3-319-95164-5
dc.identifier.isbn978-3-319-95165-2
dc.identifier.urihttp://hdl.handle.net/10400.21/9440
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationPEst-OE/SAU/UI0447/2011 - FCTpt_PT
dc.subjectMonte Carlo simulationpt_PT
dc.subjectRank-order correlationpt_PT
dc.subjectWeighted concordancept_PT
dc.subjectSigned Klotz scorespt_PT
dc.subjectSigned Mood scorespt_PT
dc.subjectvan der Waerden scorespt_PT
dc.titleWeighting lower and upper ranks simultaneously through rank-order correlation coefficientspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F00006%2F2013/PT
oaire.citation.endPage334pt_PT
oaire.citation.startPage318pt_PT
oaire.citation.titleLecture Notes in Computer Sciencept_PT
oaire.citation.volume10961pt_PT
oaire.fundingStream5876
person.familyNameAleixo
person.familyNameTeles
person.givenNameSandra
person.givenNameJúlia
person.identifierN-1862-2013
person.identifier.ciencia-idB711-3318-5807
person.identifier.orcid0000-0003-1740-8371
person.identifier.orcid0000-0002-5923-6582
person.identifier.scopus-author-id24829443600
person.identifier.scopus-author-id43261757200
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7cbebb9-e51f-4f99-92cd-4b3eee61c6c9
relation.isAuthorOfPublication239b1abb-7499-4d28-ac46-ed7d36492b30
relation.isAuthorOfPublication.latestForDiscoveryc7cbebb9-e51f-4f99-92cd-4b3eee61c6c9
relation.isProjectOfPublication7a20a023-28f3-4511-9c17-8af40583253d
relation.isProjectOfPublication.latestForDiscovery7a20a023-28f3-4511-9c17-8af40583253d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SMAleixo.pdf
Size:
444.22 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: