Repository logo
 
Publication

Dimensionamento e simulação de redes privadas 5G

authorProfile.emailbiblioteca@isel.pt
dc.contributor.advisorVieira, Pedro Manuel de Almeida Carvalho
dc.contributor.authorSousa, Rafael José de Castro de
dc.date.accessioned2025-02-24T12:08:09Z
dc.date.available2025-02-24T12:08:09Z
dc.date.issued2024-11
dc.descriptionDissertação para obtenção do grau de Mestre em Mestrado em Engenharia Eletrónica e Telecomunicações, na Área de Especialização de Telecomunicações
dc.description.abstractA introdução da tecnologia de comunicações móveis de Quinta Geração (5G) está a abrir o caminho para a quarta revolução industrial rumo à transformação digital das aplicações de alguns setores industriais verticais tais como: a agricultura, saúde e produção industrial. A solução ideal para a implementação deste tipo de redes centra-se nas redes privadas, onde se deve considerar uma gama variável de requisitos, como latências reduzidas, throughput elevado, elevada densidade de dispositivos, sendo a sua implementação um processo desafiante. Assim, o objetivo desta dissertação consiste no estudo, planeamento e simulação de redes privadas. Inicialmente fez-se um estudo detalhado dos cenários a implementar para apurar requisitos a cumprir e realizar a sua parametrização de forma a calcular o link budget, e fazer o posicionamento das estações base. Foram dimensionados cinco cenários: urbano, rural, High Speed Train (HST), Smart Street Lighting (SSL) simulados com o Radio Mobile - RF propagation simulation software e Smart Parking (SP) com o Vienna 5G SL simulator. Os dois primeiros representam redes públicas. Após as simulações com o Radio Mobile obtiveram-se as respetivas percentagens de cobertura de 96.43%, 99.92%, 89.78% e 98.43%. Nos cenários referentes a redes públicas o requisito de cobertura (95%) já é cumprido, no entanto o HST e SSL encontram-se abaixo do mínimo de 95% e 99%. Após algumas otimizações foi possível garantir uma cobertura de 98.33% e 99.55%. No cenário SP a intensidade do sinal recebido em cada sensor foi simulada nas frequências de 28 GHz e 3.5GHz. Nos 3.5 GHz todos os sensores cumprem este requisito, já nos 28 GHz quando deixa de haver linha de vista, mesmo com aumento de potência de transmissão, 59.3% dos sensores não tinham nível de sinal suficiente. Neste cenário foram analisados outros indicadores de desempenho como o throughput, Signal-to-Interference-plus-Noise Ratio (SINR) e Channel Quality Indicator (CQI).por
dc.description.abstractAbstract The introduction of Fifth Generation mobile communications technology (5G) is paving the way for the fourth industrial revolution towards the digital transformation of applications in vertical industrial sectors such as: agriculture, health and industrial production. The ideal solution for implementing this type of network focuses on private networks, where a variable range of requirements must be considered, such as low latency, high throughput, high device density, and implementation is a challenging process. The aim of this dissertation is therefore to study, plan and simulate private networks. Initially, a detailed study of the scenarios to be implemented was carried out to determine the requirements to be met and to parameterize them to calculate the link budget and position the base stations. Five scenarios were dimensioned: urban, rural, High Speed Train (HST), Smart Street Lighting (SSL) simulated with Radio Mobile - RF propagation simulation software and Smart Parking (SP) with Vienna 5G SL simulator. The urban and rural scenarios represent public networks. After the simulations with Radio Mobile, the respective coverage percentages of 96.43%, 99.92%, 89.78% and 98.43% were obtained. In the public network scenarios, the coverage requirements (95%) are met, but HST and SSL are below the minimum of 95% and 99%. After some optimizations, it was possible to measure a coverage of 98.33% and 99.55%. In the SP scenario, the received signal strength of each sensor was measured in the frequencies 28 GHz and 3.5 GHz. In the 3.5 GHz, all sensors meet the requirements, but in 28 GHz, when there is no line of sight, even with the increment of the transmit power, 59.3% of the sensors do not have enough signal strength. In this scenario, other performance indicators were analysed, such as throughput, Signal-to-Interference-plus-Noise Ratio (SINR) and Channel Quality Indicator (CQI).eng
dc.identifier.citationSOUSA, Rafael José de Castro de – Dimensionamento e simulação de redes privadas 5G. Lisboa: Instituto Superior de Engenharia de Lisboa. 2024. Dissertação de Mestrado.
dc.identifier.tid203795458
dc.identifier.urihttp://hdl.handle.net/10400.21/21587
dc.language.isopor
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject5G
dc.subjectModelo de propagação
dc.subjectPlaneamento
dc.subjectRedes privadas
dc.subjectSimulador
dc.subjectPropagation model
dc.subjectPlanning
dc.subjectPrivate networks
dc.subjectSimulator
dc.titleDimensionamento e simulação de redes privadas 5Gpor
dc.typemaster thesis
dspace.entity.typePublication
oaire.citation.endPage130
oaire.citation.startPage1
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RafaelSousa_MEET.pdf
Size:
6.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: