Repository logo
 
Publication

Faster convolutional neural networks in low density FPGAs using block pruning

dc.contributor.authorPeres, Tiago
dc.contributor.authorGonçalves, Ana
dc.contributor.authorVéstias, Mário
dc.date.accessioned2019-05-30T08:44:27Z
dc.date.available2019-05-30T08:44:27Z
dc.date.issued2019-03-29
dc.descriptionEste trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2018 do Instituto Politécnico de Lisboa. Código de referência IPL/2018/LiteCNN_ISEL
dc.description.abstractConvolutional Neural Networks (CNNs) are achieving promising results in several computer vision applications. Running these models is computationally very intensive and needs a large amount of memory to store weights and activations. Therefore, CNN typically run on high performance platforms. However, the classification capabilities of CNNs are very useful in many applications running in embedded platforms close to data production since it avoids data communication for cloud processing and permits real-time decisions turning these systems into smart embedded systems. In this paper, we improve the inference of large CNN in low density FPGAs using pruning. We propose block pruning and apply it to LiteCNN, an architecture for CNN inference that achieves high performance in low density FPGAs. With the proposed LiteCNN optimizations, we have an architecture for CNN inference with an average performance of 275 GOPs for 8-bit data in a XC7Z020 FPGA. With our proposal, it is possible to infer an image in AlexNet in 5.1 ms in a ZYNQ7020 and in 13.2 ms in a ZYNQ7010 with only 2.4% accuracy degradation.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationPERES, Tiago; GONÇALVES, Ana; VÉSTIAS, Mário – Faster convolutional neural networks in low density FPGAs using block pruning. In ARC 2019: Applied Reconfigurable Computing – 15th International Symposium on Applied Reconfigurable Computing. Darmstadt, Germany: Springer, 2019. ISBN 978-3-030-17226-8. Pp. 402-416pt_PT
dc.identifier.doihttps://doi.org/10.1007/978-3-030-17227-5_28pt_PT
dc.identifier.isbn978-3-030-17226-8
dc.identifier.isbn978-3-030-17227-5
dc.identifier.urihttp://hdl.handle.net/10400.21/10093
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationUID/CEC/50021/2019 - FCTpt_PT
dc.relationProjeto financiado no âmbito do Concurso de Projetos de Investigação, Desenvolvimento, Inovação & Criação Artística (IDI&CA) financiados pelo Instituto Politécnico de Lisboa. IPL/2018/LiteCNN_ISELpt_PT
dc.subjectConvolutional Neural Networkpt_PT
dc.subjectFPGApt_PT
dc.subjectBlock pruningpt_PT
dc.titleFaster convolutional neural networks in low density FPGAs using block pruningpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceApril 9-11, 2019 - Darmstadt, Germanypt_PT
oaire.citation.endPage416pt_PT
oaire.citation.startPage402pt_PT
oaire.citation.title15th International Symposium on Applied Reconfigurable Computingpt_PT
person.familyNamePeres
person.familyNameGonçalves
person.familyNameVéstias
person.givenNameTiago
person.givenNameAna
person.givenNameMário
person.identifier.ciencia-id4717-C2C7-3F2C
person.identifier.orcid0000-0003-1771-4934
person.identifier.orcid0000-0002-0512-7487
person.identifier.orcid0000-0001-8556-4507
person.identifier.ridH-9953-2012
person.identifier.scopus-author-id14525867300
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationa96251a8-e95d-4e78-91c3-16e951a9df78
relation.isAuthorOfPublicationcbca2f8e-c6dd-4b42-b6bc-cb15615da927
relation.isAuthorOfPublicationa7d22b29-c961-45ac-bc09-cd5e1002f1e8
relation.isAuthorOfPublication.latestForDiscoverya7d22b29-c961-45ac-bc09-cd5e1002f1e8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Faster_MVestias.pdf
Size:
435.96 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: