Repository logo
 
Publication

A note on fractal interpolation vs fractal regression

dc.contributor.authorSerpa, Cristina
dc.date.accessioned2021-05-13T10:30:12Z
dc.date.available2021-05-13T10:30:12Z
dc.date.issued2021-04
dc.description.abstractFractals fascinates both academics and art lovers. They are a form of chaos. A key feature that distinguishes a fractal from other chaotic phenomena is the self-similarity. This is a property that consists of replicating a shape to smaller pieces of the whole. In other words, making zoom in or zoom out gives similar perspectives of the same fractal thing. We may find these shapes everywhere and nature presents many examples of fractal creations. An amazing case is the romanesque cabbage. Mandelbrot is the father of the term fractal and studied various examples (see [3]). Constructing a fractal is a simple task to do, just consider an initial configuration and a replication rule for smaller scales. This is how one gets, for example, the Sierpinski triangle, the dragon curve, or the Koch Snowflake. A simple rule creates complicated shapes with non-classical geometries. Analytically, it is also possible to define fractals as solutions of a system of iterative func tional equations. Barnsley defined such a system in [1]. This non-classical geometric concept has attracted many researchers when they are faced with the need to analyse real data with irregular characteristics.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSERPA, Cristina – A note on fractal interpolation vs fractal regression. Academia Letters. (2021), pp. 1-5pt_PT
dc.identifier.doi10.20935/AL808pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.21/13344
dc.language.isoengpt_PT
dc.relationUIDB/04561/2020 - FCTpt_PT
dc.relation.publisherversionhttps://www.researchgate.net/profile/Cristina-Serpa/publication/351182322_A_Note_on_Fractal_Interpolation_vs_Fractal_Regression/links/608af0c7299bf1ad8d68cd35/A-Note-on-Fractal-Interpolation-vs-Fractal-Regression.pdfpt_PT
dc.subjectFractal interpolationpt_PT
dc.subjectFractal regressionpt_PT
dc.titleA note on fractal interpolation vs fractal regressionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleAcademia Letterspt_PT
person.familyNameSerpa
person.givenNameCristina
person.identifier.ciencia-id1B15-DA44-023A
person.identifier.orcid0000-0002-8561-118X
person.identifier.ridO-8331-2015
person.identifier.scopus-author-id56538324400
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication3fb42403-d3c8-4217-aaab-47a7add778e2
relation.isAuthorOfPublication.latestForDiscovery3fb42403-d3c8-4217-aaab-47a7add778e2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A note_CSerpa.pdf
Size:
75.88 KB
Format:
Adobe Portable Document Format