Repository logo
 
Publication

Classification of recombinant Saccharomyces cerevisiae cells using PLS-DA modelling based on MIR spectroscopy

dc.contributor.authorSampaio, Pedro
dc.contributor.authorCalado, Cecília
dc.date.accessioned2019-05-20T11:49:42Z
dc.date.available2019-05-20T11:49:42Z
dc.date.issued2019-04-18
dc.description.abstractTowards the optimization and control of bioprocesses, as the culture step of recombinant microorganisms, it is crucial to develop high-throughput monitoring techniques enabling the acquisition of a large data sets of information, as the ones based on mid infrared (MIR) spectroscopy. To maximize the knowledge associated to this this new large-scale data, it is also relevant to apply machine learning techniques, as Partial Least-Squares Discriminant Analysis (PLS-DA). In the present work, Principal Component Analysis followed by PLS-DA were applied to discriminate different growth phases of recombinant Saccharomyces cerevisiae along the production of an heterologous protein, conducted in bioreactor and monitored by high-throughput MIR spectroscopy. It was possible to derive PLS-DA models enabling to discriminate, from the MIR spectra, the yeast cells according to its metabolic status associated to the culture growth phase with an accuracy, sensitivity, and specificity between 83% and 100%. The optimised PLS-DA presented very low calibration errors, of 97% and 100% based on a cross-validation and an independent data-set, respectively. In conclusion, it was possible to build a PLS-DA model discriminating the cells metabolic status that will promote the knowledge of the bioprocess and future better control and optimization procedures.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSAMPAIO, Pedro N.; CALADO, Cecília R. C. – Classification of recombinant Saccharomyces cerevisiae cells using PLS-DA modelling based on MIR spectroscopy. In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). Lisbon, Portugal: IEEE, 2019. ISBN 978-1-5386-8506-8. Pp. 1-4pt_PT
dc.identifier.doi10.1109/ENBENG.2019.8692463pt_PT
dc.identifier.isbn978-1-5386-8506-8
dc.identifier.isbn978-1-5386-8507-5
dc.identifier.urihttp://hdl.handle.net/10400.21/10048
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8692463pt_PT
dc.subjectSaccharomyces cerevisiaept_PT
dc.subjectPartial Least-Squares Discriminant Analysis (PLS-DA)pt_PT
dc.subjectMIR spectroscopypt_PT
dc.titleClassification of recombinant Saccharomyces cerevisiae cells using PLS-DA modelling based on MIR spectroscopypt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlace22-23 Feb. 2019 - Lisbon, Portugalpt_PT
oaire.citation.endPage4pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG)pt_PT
person.familyNameSampaio
person.familyNameCalado
person.givenNamePedro
person.givenNameCecília
person.identifier1251979
person.identifier130332
person.identifier.ciencia-idAF12-6ABA-43D8
person.identifier.ciencia-id9418-E320-3177
person.identifier.orcid0000-0003-2917-4904
person.identifier.orcid0000-0002-5264-9755
person.identifier.ridE-2102-2014
person.identifier.scopus-author-id24178064100
person.identifier.scopus-author-id6603163260
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication303f3e22-ec1a-4243-9ded-98c647776e6a
relation.isAuthorOfPublicatione8577257-c64c-4481-9b2b-940fedb360cc
relation.isAuthorOfPublication.latestForDiscovery303f3e22-ec1a-4243-9ded-98c647776e6a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Classification_CRCCalado.pdf
Size:
793.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: