Repository logo
 
Publication

Industrial actuator diagnosis using hierarchical fuzzy neural networks

dc.contributor.authorMendes, Mário J. G. C.
dc.contributor.authorCalado, João Manuel Ferreira
dc.contributor.authorSousa, J. M. C.
dc.contributor.authorCosta, J. M. G. Sá da
dc.date.accessioned2020-01-16T12:11:30Z
dc.date.available2020-01-16T12:11:30Z
dc.date.issued2001
dc.description.abstractIn this paper a hierarchical structure offuzzy neural networks (FNNs) and how to train it for fault isolation given an appropriate data patterns, are presented. Fault symptoms concerning multiple simultaneous faults are harder to learn than those associated with single faults. Furthermore, the larger the set of faults, the larger the set of fault symptoms will be and, hence, the longer and less certain the training outcome. In order to overcome this problem, the proposed approach has a hierarchical structure of three levels where several FNNs are used. Thus, a large number ofpatterns are divided into many smaller subsets so that the classification can be carried out more efficiently. One ofthe advantages of this approach is that multiple faults can be detected in new data even ifthe network is trained only with datarepresenting single abrupt faults. A continuous binary distillation column having several actuated valves with PID loops has been used as testbed for the proposed approach.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMENDES, Mário J. G. C.; [et al] – Industrial actuator diagnosis using hierarchical fuzzy neural networks. In Proceedings of the European Control Conference 2001 (ECC). Porto, Portugal: IEEE, 2001. ISBN 978-3-9524173-6-2. Pp. 2723-2728pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.21/10984
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7076342pt_PT
dc.subjectFault diagnosispt_PT
dc.subjectFuzzy neural networkpt_PT
dc.subjectSingle faultspt_PT
dc.subjectMultiple simultaneous faultspt_PT
dc.subjectIncipientfaultspt_PT
dc.titleIndustrial actuator diagnosis using hierarchical fuzzy neural networkspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlace4-7 Setembro de 2001 – Porto, Portugalpt_PT
oaire.citation.endPage2728pt_PT
oaire.citation.startPage2723pt_PT
oaire.citation.titleEuropean Control Conference 2001 (ECC)pt_PT
person.familyNameGonçalves Cavaco Mendes
person.familyNameCalado
person.givenNameMário José
person.givenNameJoão
person.identifier370725
person.identifier.ciencia-idBD18-DE28-4610
person.identifier.ciencia-idB518-93E3-E7AB
person.identifier.orcid0000-0002-2448-8667
person.identifier.orcid0000-0001-6628-4657
person.identifier.ridB-5405-2008
person.identifier.ridM-4167-2013
person.identifier.scopus-author-id24340460600
person.identifier.scopus-author-id7006897277
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication80ad87b5-0a3b-46dd-8815-adb45f9a2e9a
relation.isAuthorOfPublication602b1546-f4f1-4cd5-8d29-d835d54c9bd6
relation.isAuthorOfPublication.latestForDiscovery80ad87b5-0a3b-46dd-8815-adb45f9a2e9a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Industrial_MJGCMendes.pdf
Size:
966.86 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: